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Abstract 1 Introduction

We prove the existence of tolls to induce multicommodi/e analyze when tolls on resource usage can induce
ity, heterogeneous network users that independently chogg@rs to behave in a way that maximizes some global
routes minimizing their own linear function of tolls VerSUpiective, in systems where users selfishly select re-

latency to collectively form the traffic pattern of a minimum s
average latency flow. This generalizes both the previo?#]%urces to meet their individual demands. We assume

known results of the existence of tolls for multicommoditynat the users (also known as the agents) are infinites-

homogeneous users [1] and for single commodity, heterof@ally small, and therefore the action of a single user
neous users [3]. does not affect others considerably.

Unlike previous proofs for single commodity users in  In the network setting, each edge has an associated
general graphs, our proof is constructive - it does not rely pitency function that is a nondecreasing function of
a fixed point theorem - and results in a simple polynomig};e congestionof the edge: the number of users that
sized linear program to compute tolls when the number gl o edge. Without tolls, users seek a least latency

different types of users is bounded by a polynomial. . o
We show that our proof gives a complete characteriZ8th from their source to destination, where latency

tion of flows that are enforceable by tolls. In particular, tol@f @ path is the sum of the latencies of the edges in
exist to induce any traffic pattern that is the result of min@ path [14]. The resulting flow is calledash flow
mizing an arbitrary function fronR”(%) to the reals that is or a Wardrop equilibrium The network owner, on the
nondecreasing in each of its arguments. Thus, tolls exisioiher hand, may desire to maximize social welfare by
induce flows with minimum average weighted latency, mi”tininimizing average latency experienced by users, the
mum maximum latency, and other natural objectives. system optimalow. The Nash flow may be far from the

We give an exponential bound on tolls that is indepen- . .
dent of the number of network users and the number of co 'stem optimal flow [8, 12]. By placing tolls on the use

modities. We use this to show that multicommodity tolls al edges, the owner hopes to induce users to selfishly
exist when users are not from discrete classes, but inst88Ct @ system optimal flow. With tolls, users seek
define a general function that trades off latency versus tl minimize some function of latency plus toll. Each
preference. user may have a different trade-off of latency for toll.
Finally, we show that our result extends to very generidbr agent:, we can represent this trade-off as a latency
frameworks. In particular, we show that tolls exist to inmultiplier, «(a) that converts latency into dollars.
duce the Nash equilibrium of general nonatomic congestion This setting has been considered previously in the
games to be system optimal. In particular, tolls exist everansportation and computer science literature. For the
when 1) latencies depend on user type; 2) latency functi@ase whemv(a) = 1 for all agentsa, it is well known
are nonseparable functions of traffic on edges; 3) the latetlagt the Nash flow with marginal cost tolls is a system
of a setS is an arbitrary function of the latencies of the resptimal flow [1, 9]. For distincty, early work describes
sources contained if. Our exponential bound on size okolutions that toll each user differently according to
tolls also holds in this case; and we give an example otteeir aversion to latency [4, 13]. This is unsatisfying
congestion game that shows this is tight: it requires tolls tteatd hard to enforce, as it requires knowing each user’s
are exponential in the size of the game. « value.



Three distinct attempts have been made to aset of feasible tolls that minimiznylinear objective
dress this problem. Dial [5] shows thatweighted function of tolls, including minimizing sum of tolls, or
marginal cost tolls induce a flow that minimizes theainimizing maximum toll.
a-weighted average latency, even for multicommodity We prove that any enforceable congestion can be
traffic. While this is a satisfying result, such a marginahforced using tolls bounded by a value that is inde-
cost toll result holds for this specific global objectivpendent of the number of users and the number of com-
function only, as it is a result of relation between thmodities (but depends exponentially on the size of the
users objective functions and the gradient of the gloledtwork). We use this, together with a compactness ar-
objective function. Cole, Dodis, and Roughgarden [3Jument, to show that tolls also exist when users are not
show that for the case when all agents have the sanwen discrete classes, but instead define a general func-
source and destination, then tolls exist so that the Naigim that trades off latency versus toll preference.
flow with tolls minimizes average latency. They give We show that our results on the existence of tolls
an existential proof and pose as open questions bothdlktend to more general nonatomic congestion games.
existence of a constructive proof, and the existenceradr example, they hold in abstract resource allocation
tolls in the multicommodity setting. settings; they hold when latencies are arbitrary, non-

We generalize all of these results. We prove that feeparable functions of resource use; they hold when la-
any minimal congestigrthere exist tolls such that theencies depend on user type; they hold when the latency
Nash flow induced bynulticommodity heterogeneousof a setS is an arbitrary function of the latencies of the
users is the given congestion. This gives a comple&sources contained is
characterization of flows that are enforceable by tolls. Two examples illustrate some uses of these gener-
In particular, tolls exist to induce any traffic patteralizations: In a wireless network, latency at a link does
that is the result of minimizing an arbitrary functiomot only depend upon the usage of that link but also de-
from RZ(S) to the reals that is nondecreasing in eagends upon the usage of the neighboring links, because
of its arguments. Thus, tolls exist to minimize avera@é interference. This indicates that it is useful to con-
weighted latency flows, maximum latency flows, arglder nonseparable latency functions. It is also useful to
other natural objectives. consider latency functions that treat different commod-

Unlike the proof of Cole et al. [3], our proof is conity traffic differently: On the Internet some users may
structive and does not rely on a fixed point theoresend TCP traffic and some may send UDP. These two
It is obtained using linear programming duality, and &gpes of traffic have different effects on system behav-
a consequence, we get a simple polynomial time algor.
rithm to compute the tolls for a bounded numberof  Our exponential bound on size of tolls also holds
types via linear programming. Our linear program (L) this case; and we give an example of a general
is distinct from the one used in [3] in two important assongestion game that shows this is tight: it requires tolls
pects: First, our LP gives a direct proof of the existentgat are exponential in the size of the game.
of tolls. The LP in [3] offers no such proof - its correct-  In this proceedings, Karakostas and Kolliopoulos
ness relies on establishing the existence of tolls vialgo give a constructive proof to show that tolls exist to
separate fixed point argument. Second, our LP doesingiice the minimum average latency multicommodity
assume any knowledge of the decomposition of the sfiew [7].
tem optimal flow by an agents value. The constraints
used in [3] do require this. This is a strong assumptioh, Problem Statement and Preliminaries
as there are many ways that a flow can be decompogethis section we give a formal statement of the prob-
into paths, but perhaps only one of these decompasin considered in this paper. We define the problem in
tions corresponds to the set of paths used by users whes different models: the discrete model and the con-
the right set of tolls are imposed. Fleischer [6] gives @ihuous model. The discrete model is a special case
example to demonstrate that the correct decompositisitthe continuous model, where there are only a finite
may depend om. A second consequence of the limmumber of different types of agents. This model is sim-
ear program approach we give is that we can compgter to understand; we will first prove our results in the



discrete setting, and then generalize it to the continudr@m source to dest using a path that minimizes her
setting using the existence result and an upper boundatal latency. The selfish nature of the agents and the
the tolls that we prove in the discrete model. lack of coordination between them causes inefficiency
" gi K both the di in the system (see, for example, Braess’s paradox [11]).
dMLrJ]tlcommp ity netwcér IS. In both t N 'Schte In order to overcome this, a central authority sets tolls
an t edpontlnuousl( mh(? ﬁ’ we are fg|ve3.mu ~ on the edges of the network, to direct the selfish behav-
tlcorr;]mGo |tyhnetwor, whic c%n5|(sjts of a lrelctedior of the agents toward a social optimum. Formally,
grap W'_t vertex setl” and edge set, a 138" \ve denote the toll on an edgeby 7.. An agent that
tency functionl, for everye € E, K commodities uses a patp has to pay a toll of, := 3" _ 7. and ex-
{(source, dest, d;)} < |, and a parametet; (which : b s’
’ o/ Ti=1 A ! periences a delay @f(f) := > ., lc(fe). We assume
could be a constant or a distribution) that represeS, .ost observed by an agent gf commoditysing a
the sensitivity of theith commodity to latency. EaChpathp € P is of the formayl,(f) + 7, Wherea; is

cor_nmodityz’ s specifieq by a triplgsource, des, ;), a given positive number that indicates the sensitivity of
which means thatl; units of flow need to be routed

¢ h h o agents of commodityto the latency.
rom the vertexsource € V' to the vertexdest < v These utility functions define a game between the
using the edges aff. LetP; denote the collection of

) agents, whose equilibrium is called\mash flow(also
all paths fromsource to dest in G, andP := U;P;.

thout | ¢ i B known as aNardrop equilibrium in G with respect to
We assume, without loss of generality, thaf d; = 1. tolls 7, or a Nash flow inz™. More precisely, the Nash

With a s_light abu_se of notation, we sometimes denq}gw in G7 is a multicommodity flowf such that for
the multicommodity network b too. every commodity and every two pathg, p’ € P; such

The discrete model.In this model, amulti- thatf, >0, we have;l,(f) + 7, < ailp’(f') + 7 (i
commodity flowfor the graphG and commodities words, a_II paths that.a_gents of commodzt_;are using
{(source, dest, d;)} is represented by a vector of nonaré required to be minimum cost paths with respect to

negative valuegf) for everyi = 1,..., K andp € P;. the costfunction of these agents).

Such a flow is feasible if for every 5. p, f;, = di. The continuous model. The difference between
Intuitively, this means that théh commodity sendg, the continuous model and the discrete model is that in
units of flow along the pathp. the discrete model we assume that all agents of com-

A congestioris defined as a vectdp.).cz € RF. modity i have the same sensitivity; to latency, while
Every flow f corresponds to a congestion defined &s the continuous model we allow the sensitivity of
fe =222 pep,.ecp p- This is called the congestionthese agents to come from an arbitrary given distribu-
induced byf. We say that a congestigris feasiblefor tion. To model this formally, we represent each in-
the commoditieq (source, dest, d;) } if there is a fea- finitesimal agent of commaodity as a real number in
sible multicommodity flow whose induced congestio, 4;]. The sensitivity of agents of commodityto la-
on every edge is less than or equal t@.. tency is given by a functiony; : [0,d;] — R*. We

Initially, we assume that every edge € FE assume that agents are ordered by their sensitivity; in
has a non-decreasing continudagency function. : other wordsy;’s are nondecreasing functions.

[0,1] — R* associated with it. This function spec- A multicommodity flow is a collection(f?) of
ifies how much latency each commodity usiagvill Lebesgue-measurable functiorfé : [0,d;] — 7P,
suffer given the congestion ef(i.e., the total amountone for each commodity. The amount of flow of
of flow that passes througt). More precisely, if(f.) commodity: on a pathp € P; is defined as the
is the congestion induced by a flofy then the latency Lebesgue measure ¢t € [0,d;] : fi(a) = p}, and
observed on a pathis l,(f) := 3¢, le(fe). In Sec- denoted byf.. The congestion induced kfyon an edge
tion 6, we look at more general functions for edge la-

tency and path latency. " ICole, Dodis, and Roughgarden [3] consider utilities of the f@h +

We assume that the flow is composed of infinitegi- Our model is obviously equivalent to theirs by setting = 1/3;.

. We will consider latencies as perceived differently for different users. In
ma”y small agents that behave selflshly. In the abse%ﬁ)%r for us to compare utilities, it is useful to express them in the common
of tolls, each agent of th&th commodity wants to get currency of money.



e is defined asf. == ), Zpepﬁeep f;. The latency and the dual are complementary. Conversely; i a

experienced on a pathis defined in the same way aseasible solution to the primal an@, z) is a feasible

in the discrete model. Given a tott on each edge solution to the dual, and: and (¢, z) are complemen-

e, a flow f is called a Nash flow inG™ if for every tary, then both are optimal.

commodity: and every agent € [0, d;], the minimum

of the costy; (a)l,,( f)+7, over path® € P; is achieved 3 Existence of optimal tolls in the discrete model

atp = f'(a) (in words, each agent uses a min cost paifithis section, we prove that in the discrete model, it

with respect to her sensitivity to latency, the curref§ possible to find tolls that enforce the optimal conges-

congestion, and tolls). tion. The proof is based on complementary slackness
Notice that the discrete model is essentially equigonditions applied to a pair of linear programs defined

alent to the continuous model wheg's are step func- below.

tions with a bounded number of steps. Assumeyg is a congestion that we would like to
It is known that a Nash flow always exists and isnforce. Given this congestion, we define the linear

essentially unique (under mild conditions on the latengyogramp, as follows:

functions). [3] gives details and further references.

Enforceable congestionsGiven a multicommod- N i
ity network G, we call a congestiog enforceable if minimize Zo‘i Z lp(g)fp 3.1

there is a set of nonnegative toltssuch that the con- . vooreR

gestion induced by the Nash flow &™ is g. Cole, subject to '

Dodis, and Roughgarden [3] proved that in the case of Vee E: Z Z fp<ge (32
networks with a single source, the optimal congestion, i peEPie€p

i.e., the congestion that minimizes the average latency Vi - Z f; —d (3.3)
of all agents is enforceable, and asked whether the same P

result holds for multicommodity flows. In this paper, Vivp e P, f,ﬁ >0 (3.4)

we settle this question affirmatively, by giving a char-
acterization of the set of all enforceable congestions. The dualD, of the above program is the following:
Our results even hold for the general classafgestion

games which is an important and extensively-studied

class of games defined by Rosenthal [10]. maximize Z diz; — Z Jete (3.5)
Linear Programming preliminaries. In this pa- _ : ek

per we make strong use of linear programming duality. subject to

There are many basic reference texts on this subject, for Vi Vp € P; : zi — Z te < aily(g)  (3.6)

example [2]. We briefly review some of the basics that e€p

we use here. A linear program defined by data matrices Vee E:  t.>0 (3.7)

P andC and data vectors, p, ¢ with variable vectot: . )

of the formmin az: Pz < p: Cz = ¢:x > 0 has din- Let f and (¢, 2) be optimal solutions to these re-

ear program duabf the formmax Tz — pTt: CT2 — spective programs. Complementary slackness implies
PTt < a;t > 0. (Linear programs may have many difthatif f, > 0thenz; =5, e +aily(g). This means
ferent forms. This is just for example.) Solutiansnd thatz; represents the cost of all paths used by commod-
2, are said to beomplementaryf z; > 0 implies that 'ty %: SO thatf is a Nash flow. _

C;z — Pjt = a; (converselyC;z — Pjt < a; implies We define the concept afinimalityof a congestion

z; = 0); t; > 0 implies thatP,z = p;; andz; > o asfollows:

implies thatC;z = ¢;. . S ,
DEFINITION 1. A feasible congestiop is minimal if

FAcT 2.1. If both a linear program and its dual haveand only if the linear programP, has an optimal
feasible solutions, then they both have optimal solsslution in which for every € F, the inequality (3.2)
tions, and every pair of optimal solutions of the primas tight.



We now prove the following theorem, that chara€coROLLARY 3.1. For every multicommodity network
terizes the set of all enforceable congestions. in the discrete setting, there are tolls that enforce an
optimal congestiog*.
THEOREM 3.1. A feasible congestionis enforceable

if and only if it is minimal. Proof. We call a congestiop minimally feasiblef it is

feasible, and for every congestighsuch thaty, < g.

for everye € E andg, < g. for at least one edge

e, ¢ is not feasible. Take an optimal congestign

We can turn this congestion into a minimally feasible
ngestion as follows: Leg(®) := ¢. Consider the

gges of the graph in an arbitrary ordgre, ..., and

Proof. First, we prove the “if” part. By minimality of
g and LP duality, there is an optimal solutigh for

P, such that for everye € E, the inequality (3.2)
is tight (in other words, the congestion induced b

is ¢g), and a corresponding complementary optim ‘ k .
/s 9) P g P Y O each edgee;, let ¢V be the congestion that is

solution (¢,z) for D,. Now, we prove, using the h 1) h ib|
complementarity slackness conditions, that the fybwt € same ag everywhere except possibly o,

is a Nash flow inG*. Fix a commodityi, and consider 2Nd gé? is the minimum amount for whict®,.) has
a pathp ¢ P; with nonzero flow (i.e..fi > 0). By a feasible solution. Leg* be the final congestion. By
e.f .

the primal complementarity slackness condition, sgpis definition,g* is minimally feasible. In other words,
every suctp we havea;l,(g) + 3. te = z. This every feasible and therefore every optimal solution of
ecp )

means that the utility of the agents of commodity Lo+ Makes inequalities (3.2) tight for every edge

usingp is the same value; for all p € P;. Also, for Thus,g* is minimal. Hence, by Theorem 3.3 is
any other pattp € P;, by inequality (3.6) we have €nforceable. On the other hand, since latency functions
ailp(9) + Yeepte > z. Therefore, agents do nof'® nOQdeCfeaS'n@!Ze le(9%)ge < >cle(9)ge, and
have an incentive to switch their paths. Thysis a Nencey” is also optimal. O
Nash flow inG?, and the congestion induced Hyis g.

Thereforeg is enfor le. . .
ereforeg is enforceable define the optimal flow as a flow that minimizes an

Conversely, assume that a congesgaa enforce- arbitrary nondecreasing function of congestion on the
able. This means that there is a multicommaodity flow y g 9

f and tolls such thatf is a Nash flow inG”, and edges. This is formulated in the following corollary,
the congestion induced by it i Since f is a,Nash whose proof is essentially the same as the proof of

flow, for everyi, all the agents of typeé should have Corollary 3.1.
the same utility. This means that for everg P; such coroi ARy 3.2. Letw : RE©@ — R be an arbitrary

that f;, > 0, the valuen;l,(g) + 7(p) is the same. Let fnction that is nondecreasing in each of its arguments.
us call this valuez;. Since no agent has an incentive 9nan there are tolls, that enforce a congestiof that
change her path, for every pahc 7; we must have minimizegy(f) over the set of all feasible congestions.
a;ly(g) + 7(p) > 2. Thus, if we considef and(r, z)
as the solutions of the progrant§ and Dy, thenthey  The above corollary can be useful in certain ap-
are both feasible solutions, and they satisfy the compigications. For example, by enforcing a flofvthat
mentarity slackness conditions. Thufsis an optimal minimizesmax; minyep, l,(f), we can ensure that in
solution for P, and we also know that for every in- the resulting Nash flow an emergency vehicle (in other
equality (3.2) is tight. Hencey is minimal. O words, an agent who only cares about the delay) can
get from everysource to the correspondindest in the
We now show that the above theorem answers ahortest possible time in the worst case.
firmatively the question asked by Cole, Dodis, and An alternative (and arguably better in certain ap-
Roughgarden [3] regarding the enforceability of optplications) way to define an optimal flow is to con-
mal congestion. We call a congestigroptimal, if ¢ sider the weighted average of the latencies suffered
minimizes) __l.(g)g. over the set of all feasible con-by the agents, where the weight of an agent is equal
gestions. Notice that__ [l.(g)g. is equal to the averageto her sensitivity to latency. More precisely, we say
latency that the agents suffer in the network. that a flow f is weighted optimalif it minimizes

Notice that the above proof works even if we



DD pep, I,(f) [} over the set of all feasible flows.  Itis also worth mentioning that if we allow negative
The next corollary shows that minimal weighted flowslls (i.e., if we can pay agents for using an edge), then
are also enforceable. Notice that this statement saysry congestion is enforceable. This can be proved by
that not only the congestion induced by the flow, bahanging inequality (3.2) iP, to equality and using
also the flow itself is enforceable. the argument in the proof of Theorem 3.1.

COROLLARY 3.3. For every multicommaodity network
in the discrete setting, there are tolls that enforce a

weighted optimal flowf*. Polynomial time computation of tolls. The linear

programsP, andD,, give a polynomial-time algorithm
Proof. Among all weighted optimal flows, take a flowto compute tolls that induce an optimal congestion (or
f*such thad __ f is the smallest. By Theorem 3.1 iin general, any enforceable congestion) in polynomial
is enough to show that this flow is minimal. Assume fime. Although these linear programs have exponential
is not. Therefore there is an optimal SOlUtiﬁmOl’ Pf* size, they can be written as p0|ynomia|-size programs
for which inequality (3.2) is not tight for some edgesn the standard way: FoP,, we use variableg; for

We have every commodity and edge instead off,'s, and write
i *\ i flow conservation constraint for every vertex and every
le% l < o l
zi: ;;_ WDy = zZ: Z};. o) commodity and the capacity constraint on every edge.

_ Taking the dual of this program gives us a polynomial-
< D aid L), (38) gige p?rogram equivaIeFr)n Sﬁ)g, vghere toIIsEe Zome

i pEP from the dual variables corresponding to the capacity
where the first inequality follows from inequality (3.2Fonstraint inP.
and the fact that latency functions are nondecreasing, After writing P, and D, as polynomial-size pro-
and the second inequality is a consequence of the ogtams, we can solve them using an LP solver to com-
mality of f for the linear progran®;-. Equation (3.8) pute optimal tolls and a corresponding Nash flow. Fur-
shows thatf is also a weighted optimal flow. Alsothermore, by solving), once and computing the value
we know thatf, < f* for every edges and f. < f* of the objective function, we can add an inequality to
for some edges. This contradicts with the assumptithis program so that the resulting set of inequalities give
that f* is the weighted optimal flow with the minimuma complete characterization of the polytope of tolls that
value of) __ fr. O enforceg. This can be used to compute tolls that en-

force g and are optimal with respect to another objec-

The argument in the proof of Corollary 3.1 can bﬁ/e, for example, minimizing sum of tolls, or minimiz-

used to show thatveryfeasible congestion is enforcel—n maximum toll.

able in the following weaker sense: Wg say thgt a sel ~ple Dodis, and Roughgarden [3] gave a different,
of tolls 7 we/akly enforces. congestiony, if there is a 446,gh similar, linear program for computing tolls
congestiony’ < g thatis enforced by (In [3] this program is stated in the case of single-
COROLLARY 3.4. Every feasible congestiony is commodity networks, but it is easy to see that the
weakly enforceable. same program works for multicommodity networks
too). However, this program requires the knowledge of
Proof. As in the proof of the previous corollary, wehe flow pattern of different commodities in the Nash
start from the congestiop and consider the edges ofijow to be induced. This is a strong assumption, as
the graph in an arbitrary order. For each edge in thifere are many ways that a flow can be decomposed into
order, we decrease the amount of congestion on thaths, but perhaps only one of these decompositions
edge to the minimum amount for which the congesti@@rresponds to the set of paths used by users when the
is still feasible. Lety’ denote the resulting congestionight set of tolls are imposed. Fleischer [6] gives an
Clearly, ¢' is minimally feasible, and therefore byexample to demonstrate that the Nash flow pattern may
Theorem 3.1 it is enforceable. Singe < g, the depend onv. Furthermore, as stated in [3], their linear
corollary follows. U program does not prove the existence of optimal tolls.



4 An exponential bound on the tolls The idea of the proof is to estimate continuays by

The following theorem gives a bound on the maximufhSequence of step functions. For each step function we
value of tolls needed to enforce a given congestidin find the optimal tolls using Corollary 3.1. This is
This bound is exponential in the number of edges $@ted in the following lemma.

the graph, but it is important that it is independent of

. EMMA 5.1. Assume that for everiy the functiono;
the number of commodities or types of agents. We will . .
. . S iS a step function with a bounded number of steps. Then
use this result in the next section in the proof of t

existence of tolls in the continuous model. As we wi Ferg are tolls{r. } that enforce an optimal congestion
in }hIS network.

see in Section 5, this bound also holds for more genera

congestion games. . Proof. Letr; denote the number of steps in the function
We denote the maximum af;'s by amax. AlSo, let . Replace each commoditywith r; commodities,
Imax denotemax.c p(q) le(1)- each corresponding to one of the stepswpf Each of

THEOREM4.1. Let G be a multicommodity network (hese commodities has a constant value of sensitivity
and g be an enforceable congestion @ Theng is [0 latency which is equal to the value of in the

enforceable with tolls satisfyingt, < T forall ¢ € £, corresponding step. Also, the demand for each of these
whereT is a number that depends only on the numbgpmmodities is equal to the length of the corresponding

of edges in the graphnay, and aumax, and not on the Step in;. Itis easy to see that the network constructed

number of commodities. in this way is equivalent to the original network, in the
sense that for any set of tolls, a Nash flow in the original

Proof. Consider a basic feasible soluti¢f z) of the network corresponds to a Nash flow in the constructed

dual programD,. This program hag# + m variables, network. Thus, we can use Corollary 3.1 to find a set

where K is the number of commodities and is the of tolls for this network, and therefore for the original

number of edges ofi. Therefore, there should benetwork, that enforce an optimal congestion. g

a set of K + m inequalities that are tight irft, z),

giving us K + m equations with a unique solution of ~ The following lemma shows that no matter what

(t,z). Eachz should be present in at least one ¢f:'S are, we can represent a Nash flow concisely.

these t'ghF Inequalities, for otherwise the so_lqun W.IEEMMA 5.2. For every network and every set of tolls

not be unique. Therefore, we can use this equation . .

L . in the continuous model, there is a Nash flgvsuch
to eliminatez; from the set of our equations. After

eliminating all z;, we getm equations, each of thethat for every commodityand every patlp € P, the

form t, = 0 or of the form >, ., t, + aily(g) = set{a € [0,d;] : f'(a) = p}is a connected set.

> eep te + ajly(g). We can write these equations
as a matrix equationlt — b, where A is a matrix Proof Sketch. We show that for every two agents

of +1's and—1's, andb is a vector whose entries aré-? € [0,d;], if a < b, then the latency of the path

of the forma;l,(g9) — «;ly(g), and therefore are 411/ (a) is greater than or equal to the latency of the path

at mosta..ml The collection of allm x m / (b). Thisistrue, since otherwidehas an incentive to
max max-

matrices with+1 entries is finite. LetS denote the SWitch to the patly’(a). Using this fact and Lebesgue-

maximum possible entry in the inverse of a matrix frofieasurability off*, we can chang¢* to get a flow that
this collection. Clearlys is finite and only depends onS still a Nash flow and also satisfies the condition of the

m. Also, we havet = A~b, and therefore for every!€Mma. 0

e, te < m2Samaxlmax. This completes the proof of the
theorem. 7 THEOREMS5.1. For every multicommodity network in

the continuous model, there is a set of tolls that enforce
5 Existence of optimal tolls in the continuous an optimal congestion.
model

In this section we use the results of Sections 3 and 4Rmof Sketch.For each commodity, we estimate the
show that in the continuous setting optimal tolls exidtinctiona; by a sequence;}, o2, . .. of step functions.



Define a networkG* by replacing the function; by its of resources is the set of edges of the graph, and
k'th estimateozig for every commodity. By Lemma5.1 S; is the set of all paths frorsource to dest.
for eachk there is set of tolls* that enforce an optimal
congestion inG*. Let f*) denote the Nash flow inthe ~ Usageof a resource is the total volume of users
network G* with respect to tolls*. We can assumeusing that resource (i.e., picking sets containing the
that f(*)'s satisfy the condition of Lemma 5.2, andesource). Each resourceis characterized by its
therefore each of these flows can be representedl@gncy function/; : Ry — R, which is a non-
giving the end points of the intervals on which th@ecreasing function of the total usage jof A usage
flow is constant. This means that ea¢ff) can be Vvectoris a vector inR%! specifying the usage for every
given by a sequence of at moge| real numbers in resource. A usage vectoris feasibleif there exist a
[0,1]. Also, by Theorem 4.1 in the previous sectioavay to satisfy every user without using any resource
we can assume that all tolls irf are bounded by aj more thanv;. A usage vector isninimally feasible
constantT’, independent of. Therefore,(rk, f(k)) if decreasing any component by any positive amount
belongs to a compact set. This means that thergrigkes it infeasible.
a subsequencky, ks, . . ., such that(r*, f(k)) on this Our objective is to set tolls on the resources in order
subsequence tends to sofmef). Itis not hard to show to induce a given usage vector. lzgtdenote the toll on
thatr enforces the flowf in the original network. [ resourcej. Users of the'th kind seek to pick a sef €
S; that minimizesw; 3o 1j(v;) + > c 5 755 Wherev
is the current usage vector. The Nash equilibrium of
this game is defined in the same way as in Section 2.
In the proof of Theorem 3.1 we did not use much of thge say that a usage vectois enforceableif there are
structure of the network. In this section we show thgjjis - such that is the usage vector induced by a Nash
similar results are true for a general class of CongeSt@(ﬁhilibrium in the game resulting from the tolts
games. First, we discuss a simple setting, which is es-
sentially the setting of general congestion games (OrMP4EOREM 6.1. Suppose € RT is a minimally feasi-
inally defined by Rosenthal [10]) with infinitesimallyble usage vector. Then there exist nonnegative tolls that
small agents. enforceu.

Consider a game which has different kinds of
users andM different resources. We want to tolProof. Let x;5 be the volume of users of theth kind
resources so that we can enforce a certain usagehat have chosen the sgt Let ;s denote the quantity
resources. Users have certain usage requirementS@nEjeS l;(v;). Consider the following linear program
they are sensitive to both latencies and tolls. Therew#h z;5 as variables.
an infinite number of users of each kind, each having
an infinitesimally small effect on the game. Th¢h

kind is described by the following parameters: minimize > > ligwis (6.9)
i SeS;

6 General Congestion Games

o total volume of the usergl;. subjectto Vi : Z rig > d;
. 1 - Y

e a latency sensitivity constanty;. This constant Sesi
specifies the monetary value of one unit of latency Vi Z Z Tis < vj
for a user of type. i SeS;| jes

Vi,Se€S;: x;9 >0
e a collectionsS; of subsets of the resources. Each
set inS; is a combination of resources that can The first set of constraints tells us that the all the
satisfy a user of type. If a user picks a setdemands are met. The second set of constraints makes
containing j, then we say that she is using thsure that we do not exceed the usage givenuvby
resourcej. For example, in the multicommodityMinimality of v implies that these constraints are tight
network game described in earlier sections the setany feasible solution. This means that every feasible



solution of the above program represents a situation in It can be easily observed that the proof of Theo-
the game where is the usage vector and hengg is rem 6.1 did not use many of the assumptions of the
the total monetary value of the latency of resourcesrimodel. In the following, we describe three increasingly
S for a user of type. more general models in which our results still hold.
The dual of the above program will give us the tollds mentioned below, these generalizations are useful
to enforcev. The dual can be written as follows, withn certain practical applications.
7; andz; as the dual variables corresponding to jte 1. Different types of users may experience differ-
resource and thah type of users, respectively. ent latencies for a resource with the same congestion.
In natural settings, users may intend to use a resource
differently. For example, on the Internet, UDP traffic
maximize Y diz;— Y ;T (6.10) and TCP traffic might be affected differently by con-

i Y gestion, or in a road, a motorbike and a big truck ex-
perience different latencies in the same traffic. So we
can assume that latency is a function which may assign
different latencies to different kinds of users. Formally
l; : Ry — RY. Theorem 6.1 and Corollary 6.1 hold
Vi1 =0 for this generalization. In fact, now we can pall into
l;;, wherel;; is the latency function of for i. So we
Eo not needy;’s; instead, latency functions themselves

subjectto  Vi,S€S;: 2z <lis + er
jES
Vi: 2z >0

We interpret the dual variable; as the toll on
resourcej. The right-hand side of the first set o onverts the latencies into monetary values.
constraints is the total cost for users of tyige choose 2. Latency functions may be nonseparable func-
S. Sincez; appears with positive coefficient in the du’c{'ons of the usage of resources. For example, in wire-

jective function I n nstraint form . .
objective function, at least one constraint fgrmust less networks, because of interference, latency on a link

be t'?ht' T.hls _|mpI|es thaﬁf IS gcéually th? cheapestis not only a function of the traffic on the link but also
cost for satisfying a user of typee By complementary a function of the traffic on the neighboring links. In

slackgesst_ COTdC;tIOT’ f(?rtgny Opt'm"ﬂ primal SOI_u“OH)ad networks, congestion on a road depends on traffic
» and optimal dual solutiorig, 7), wheneverz;s is adjacent roads. Our model permits latencies to be a

Eoi'.tl\lﬁ tr%i_correSpor':}?w:g (r:]onstralnt in the fd;;mlb%neral function of the usage of all the resources. For-
€ ight. This means hal Whenever users ot kiade -, l;: RY — RY. Theorem 6.1 and Corollary 6.1

F:hoosmgS to satisfy thgmselves their cost of o!omg SRold for this generalization.
is z;, which as argued is the cheapest cost. Since each3 We assumed that the latency of a Seis the

user is infinitesimally small, changing the strategy f%’hm of latencies of the resources in it. This assumption
any user does not change the latencies. Hence choo%nglso not necessary. Our results hold even if we

j[hfe.: ihea peITS 'S 6I1I best r_?qunsel' str?htetg_;y foNr e\rl]e%ow each type of user to have an arbitrary function
infinitesimally small user. This implies thatis a Nash , . Si x BM i R, that for every sef ¢ S, and every

equilibrium for the tolls;, inducing the usage vectorusage vecton ¢ IR%{‘{, gives the monetary value of the

latency experienced by if she picksS and the current

sage vector is. Furthermore, we could allow;’s to

In fact, it is not difficult to argue that whenever W?e collections ofractional sets of rESOUICES
have a Nash equilibrium satisfying the primal LP (6.9), ) . :
d fying P ( Bounds on Generalized Congestion Gameshe

the tolls will satisfy the dual LP (6.11) and they will ) : .
form a primal-dual optimal pair. exponential bound on tolls given in Theorem 4.1 also

The definition ofweakly enforcingand the proof hold_sforgen_eralize(_j cong_estion games. The proquen-
of the following corollary is similar to the ones inerallzes easily to this setting. Th_erefore, toIIs_ exist to
Section 3. enforce usage patterns of generalized congestion games
also in the continuous setting analogous to the continu-
ous model for network games described in Section 5.

Furthermore, as the following example shows, the

V.

COROLLARY 6.1. Supposev € Rf is a feasible
usage vector. Themcan be weakly enforced via tolls.



bound in Theorem 4.1 cannot be improved significanflyl] T. RoughgardenSelfish RoutingPhD thesis, Cornell
in general congestion games. University, 2002.

[12] Tim Roughgarden and Eva Tardos. How bad is selfish
routing?  InIEEE Symposium on Foundations of
Computer Sciengg@ages 93—-102, 2000.

[13] M. J. Smith. The marginal cost taxation of a transporta-

ExaMPLE 1. Consider an abstract congestion game
consisting of: types of agents, ar{k + 1) resources

calleday, . .., ag, bo, . .., b. All agents have the same  ~ {jo network. Trans. Res. Ser.,A3:237-242, 1979.
sensitivity to latency. Agents of théh type have [14] J. G. wWardrop. Some theoretical aspects of road traffic
strategy setS; = {{ai-1,bi-1},{a;i},{bi}}. The research. IrProc. Institute of Civil Engineers, Pt.,lI
latency of the resourcesy and by is always one, volume 1, pages 325-378. 1952.

while the latency of all other resources is always zero.
The congestiory that we would like to enforce is the
following: the congestion afy, by, ar, andb are 1/3,
and the congestion of all other resources is 2/3. It is
easy to see that in order to enforce this congestion, we
must have,, = 7, = 7,,_,+m,_, foreveryi > 1, and

Ta, = Tb, = 2. Therefore, we need tolls exponential in
the number of commodities in order to enforci this
game.

References

[1] M. Beckman, C. B. McGuire, and C. B. Winsten.
Studies in the Economics of TransportationYale
University Press, 1956.

[2] Vasek Chvatal.Linear Programming W H Freeman
& Co., 1983.

[3] R. Cole, Y. Dodis, and T. Roughgarden. Pricing
network edges for heterogeneous selfish users. In
STOC 2003pages 521-530, 2003.

[4] S. C. Dafermos. Toll patterns for multiclass-user
transportation networks.Transportation Scj.7:211—
223, 1973.

[5] R. B. Dial. Network-optimized road pricing: Parti: A
parable and a modeDperations Research7(1):54—
64, 1999.

[6] L. Fleischer. Linear taxes suffice. Proc. of ICALR,
2004. To appear.

[7] G. Karakostas and S. Kolliopoulos. Edge pricing of
multicommodity networks for heterogeneous selfish
users. In this proceedings.

[8] Elias Koutsoupias and Christos Papadimitriou. Worst-
case equilibria. Lecture Notes in Computer Science
1563:404-413, 1999.

[9] A. C. Pigou. The Economics of WelfaredMacmillan,
1920.

[10] R.W. Rosenthal. A class of games possessing pure-
strategy nash equilibridnt. J. Game Theory2:65-67,
1973.



