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Combinatorial auctions (CAs) have recently emerged as a possible mechanism
to improve economic efficiency when many items are on sale. In a CA, bidders
can submit bids on bundle of items, and thus may easily express complementar-
ities (i.e., the bidder values multiple items together more than the sum of the
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Abstract

Communication complexity has recently been recognized as a major
obstacle in the implementation of combinatorial auctions. In this paper,
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queries”.
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valuations of the individual items), and substitutabilities (i.e., multiple items
together are worth less than the sum of the valuations of the individual items)
between the objects on sale!. CAs can be used, for instance, to sell spectrum
licenses, pollution permits, land lots, and so on [9].

The implementation of CAs poses several challenges, including computing
the optimal allocation of the items (also known as the winner determination
problem), and efficiently communicating bidders’ preferences to the auctioneer.

Historically, the first problem that has been addressed in the literature is
winner determination. In [18], it is shown that solving the winner determina-
tion problem is NP-hard; even worse, finding a n'~“-approximation (here, n is
the number of bids) to the optimal solution is NP-hard [20]. Despite these hard-
ness results, recent research has shown that in many scenarios the average-case
performance of both exact and approximate winner determination algorithms
is very good [4, 15, 19, 20, 23]. This is mainly due to the fact that, in practice,
bidders’ preferences (and, thus, bids) are somewhat structured, where the bid
structure is usually induced by the economic scenario considered.

The communication complexity of CAs has been addressed only more re-
cently. In particular, preference elicitation, where the auctioneer is enhanced by
elicitor software that incrementally elicits the bidders’ preferences using queries,
has recently been proposed to reduce the communication burden. Elicitation
algorithms based on different type of queries (e.g., rank, order, or value queries)
have been proposed [6, 7, 13]. Unfortunately, a recent result by Nisan and Segal
[17] shows that elicitation algorithms in the worst case have no hope of consid-
erably reducing the communication complexity, because computing the optimal
allocation requires the exchange of an exponential amount of information be-
tween the elicitor and the bidders. Indeed, the authors prove an even stronger
negative result: obtaining a better approximation of the optimal allocation than
that generated by auctioning off all objects as a bundle requires the exchange of
an exponential amount of information. Thus, the communication burden pro-
duced by any combinatorial auction design that aims at producing a non-trivial
approximation of the optimal allocation is overwhelming, unless the bidders’
valuation functions display some structure. This is a far worse scenario than
that occurring in single item auctions, where a good approximation to the opti-
mal solution can be found by exchanging a very limited amount of information
[3].

For this reason, elicitation in restricted classes of valuation functions has
been studied [2, 8, 14, 17, 22]. The goal is to identify classes of valuation
functions that are general (in the sense that they allow to express super-, or
sub-additivity, or both, between items) and can be elicited in polynomial time.

1.1 Full elicitation with value queries

In this paper, we consider a setting in which the elicitor’s goal is full elicitation,
i.e., learning the entire valuation function of all the bidders. This definition

In this paper, we will use also the terms super- and sub-additivity to refer complementar-
ities and substitutabilities, respectively.



should be contrasted with the other definition of preference elicitation, in which
the elicitor’s goal is to elicit enough information from the bidders so that the
optimal allocation can be computed. In this paper, we call this type of elicitation
partial elicitation. Note that, contrary to the case of partial elicitation, in full
elicitation we can restrict attention to learning the valuation of a single bidder.

One motivation for studying full elicitation is that, once the full valuation
functions of all the bidders are known to the auctioneer, the VCG payments
[5, 11, 21] can be computed without further message exchange. Since VCG pay-
ments prevent strategic bidding behavior [16], the communication complexity of
full preference elicitation is an upper bound to the communication complexity
of truthful mechanisms for combinatorial auctions.

In this paper, we focus our attention on a restricted case of full preference
elicitation, in which the elicitor can only ask the bidders value queries (what is
the value of a particular bundle?). Our interest in value queries is due to the
fact that, from the bidders’ point of view, these queries are very intuitive and
easy to understand. Furthermore, value queries are in general easier to answer
than, for instance, demand (given certain prices for the items, which would be
your preferred bundle?) or rank (which is your i-th most valuable bundle?)
queries.

Full preference elicitation with value queries has been investigated in a few re-
cent papers. In [22], Zinkevich et al. introduce two classes of valuation functions
(read-once formulas and ToolboxDNF formulas) that can be elicited with a poly-
nomial number of value queries. Read-once formulas can express both sub- and
super-additivity between objects (we recall that sub- and super-additivity are
the same as substitutability and complementarities, respectively), while Tool-
boxDNF formulas can only express super-additive valuations. In [8], we have
introduced another class of “easy to elicit with value queries” functions, namely
k-wise dependent valuations. Functions in this class can display both sub- and
super-additivity, and in general are not monotone? (i.e., they can express costly
disposal).

1.2 Our contribution

The contributions of this paper can be summarized as follows:

e We introduce the hypercube representation of a valuation function, which
makes the contribution of every sub-bundle to the valuation of a certain bundle S
explicit. This representation is a very powerful tool in the analysis of structural
properties of valuations.

e We study several classes of “easy to elicit with value queries” valuations.
Besides considering the classes already introduced in the literature, we introduce
several new classes of polynomially elicitable valuations.

e We show that the family of “easy to elicit” classes of valuations is closed
under union. More formally, we prove that, if C; and Cy are classes of val-

2A valuation function f is monotone if f(S) > f(S’), for any S’ C S. In the context of
valuation functions, this property is also know as free disposal, meaning that bidders that
receive extra items incur no cost for disposing them.



uations elicitable asking at most p;(m) and p2(m) queries, respectively, then
any function in Cq [J Cs is elicitable asking at most p; (m) + p2(m) + 1 queries.
Furthermore, we prove that this bound cannot be improved. Thanks to this
property, the elicitor does not need to know exactly the class to which valua-
tion functions belong. We remark that the union property above is valid only
for elicitation with value queries. For instance, assume elicitation is done with
rank queries, and that we have two classes of “easy to elicit with rank queries”
valuations C; and Cs. Assume there exist f; € Cq and fo € Cy such that f;
and f, have the same exact ranking of items (but they give different values to
the bundles). In this case, if only rank queries can be used the elicitor has no
way of figuring out which one of the two valuations is the right one.

e The algorithm used to elicit valuations in Cq|JC2 might have super-
polynomial running time (even though it asks only polynomially many queries).
Indeed, we show that there exist classes Cq, Ca such that eliciting a function
in C1JC2 can be done asking polynomially many queries, but identifying
the queries to ask is NP-complete. Despite this hardness result, we present
an efficient polynomial time elicitation algorithm which, given any valuation
function f in RO;1m|J Tool_ | Tooly |JG2|J INT (see Section 3 for the
definition of the various classes of valuations), learns f correctly. This is an
improvement over existing results, in which the elicitor is assumed to know
exactly the class to which the valuation function belongs.

e In the last part of the paper, we discuss what renders a certain class of
valuations “easy to elicit” with value queries. We introduce the concept of
strongly non-inferable set of a class of valuations, and we prove that if this set
has super-polynomial size then efficient elicitation is not possible. On the other
hand, even classes of valuations with an empty strongly non-inferable set can be
hard to elicit. Furthermore, we introduce the concept of non-deterministic poly-
query elicitation, and we prove that a class of valuations is non-deterministically
poly-query elicitable if and only if its teaching dimension is polynomial.

Overall, our results seem to indicate that, despite the impossibility result of
[17], efficient and truthful CA mechanisms are a realistic goal in many economic
scenarios. In such scenarios, elicitation can be done using only a simple and
very intuitive kind of query, i.e. value query.

2 Preliminaries

Let I denote the set of items on sale (also called the grand bundle), with |I| = m.
A waluation function on I (valuation for short) is a function f : 27 — Rt that
assigns to any bundle S C I its valuation. A valuation is linear, denoted f, if
fi(S) = > ,cs f(a). To make the notation less cumbersome, we will use a, b, . ..
to denote singletons, ab, be, ... to denote two-item bundles, and so on.

Given any bundle S, ¢(S) denotes the value query correspondent to S. In
this paper, value queries are the only type of queries the elicitor can ask the
bidder in order to learn her preferences. Unless otherwise stated, in the following
by “query” we mean “value query”.



Definition 1 (PQE). A class of valuations C is said to be poly-query (fully)
elicitable if there exists an elicitation algorithm which, given as input a descrip-
tion of C, and by asking value queries only, learns any valuation f € C asking
at most p(m) queries, for some polynomial p(m). PQE is the set of all classes
C that are poly-query elicitable.

The definition above is concerned only with the number of queries asked
(communication complexity). Below, we define a stronger notion of efficiency,
accounting for the computational complexity of the elicitation algorithm.

Definition 2 (PTE). A class of valuations C is said to be poly-time (fully)
elicitable if there exists an elicitation algorithm which, given as input a descrip-
tion of C, and by asking value queries only, learns any valuation f € C in
polynomial time. PTE is the set of all classes C that are poly-time elicitable.

It is clear that poly-time elicitability implies poly-query elicitability.

Throughout this paper, we will make extensive use of the following repre-
sentation of valuation functions. We build the undirected graph H; introducing
a node for any subset of I (including the empty set), and an edge between any
two nodes Sy, Sy such that S; C Sy and |S1| = |S2] + 1 (or vice versa). It
is immediate that H;, which represents the lattice of the inclusion relationship
between subsets of I, is a binary hypercube of dimension m. Nodes in H; can
be partitioned into levels according to the cardinality of the corresponding sub-
set: level 0 contains the empty set, level 1 the m singletons, level 2 the W
subsets of two items, and so on.

The valuation function f can be represented using H; by assigning a weight
to each node of H; as follows. We assign weight 0 to the empty set®, and weight
f(a) to any singleton a. Let us now consider a node at level 2, say node ab.
The weight of the node is f(ab) — (f(a) + f(b)). At the general step i, we assign
to node Sy, with [S1] = 4, the weight f(S1) — > g5, w(S), where w(S) denotes
the weight of the node corresponding to subset S. We call this representation
of f the hypercube representation of f, denoted H(f).

The hypercube representation of a valuation function makes it explicit the
fact that, under the common assumption of no externalities®, the bidder’s val-
uation of a bundle S depends only on the valuation of all the singletons a € S,
and on the relationships between all possible sub-bundles included in S. In gen-
eral, an arbitrary sub-bundle of S may show positive or negative interactions
between the components, or may show no influence on the valuation of S. In
the hypercube representation, the contribution of any such sub-bundle to the
valuation of S is isolated, and associated as a weight to the corresponding node
in H[.

Given the hypercube representation H;(f) of f, the valuation of any bundle
S can be obtained by summing up the weights of all the nodes S' in H;(f)

3That is, we assume that the valuation function is normalized.

48lightly abusing the notation, we denote with ab both the bundle composed by the two
items @ and b, and the corresponding node in Hy.

5With no externalities, we mean here that the bidder’s valuation depends only on the set
of items S that she wins, and not on the identity of the bidders who get the items not in S.
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Figure 1: Example of valuation function, and the corresponding hypercube
representation. In the hypercube representation, the node corresponding to the
empty set has weight 0, and it is not shown.

such that S’ C S. These are the only weights contained in the sub-hypercube
of H;(f) “rooted” at S. An example of valuation function and its hypercube
representation are reported in Figure 1.

Proposition 1. Any valuation function f admits a hypercube representation,
and this representation is unique.

Given Proposition 1, the problem of learning f can be equivalently restated
as the problem of learning all the weights in H;(f). In this paper, we will often
state the elicitation problem in terms of learning the weights in Hy(f), rather
than the value of bundles.

Since the number of nodes in Hj is exponential in m, the hypercube repre-
sentation of f is not compact, and cannot be used directly to elicit f. However,
this representation is a powerful tool in the analysis of structural properties of
valuation functions.

3 Classes of valuations in PTE

In this section, we consider several classes of valuation functions that can be
elicited in polynomial time using value queries.

3.1 Read-once formulas

The class of valuation functions that can be expressed as read-once formulas,
which we denote RO, has been introduced in [22]. A read-once formula is
a function that can be represented as a “reverse” tree, where the root is the
output, the leaves are the inputs (corresponding to items), and internal nodes
are gates. The leaf nodes are labeled with a real-valued multiplier. The gates
can be of the following type: SUM, MAX,, and ATLEAST.. The SUM operator



simply sums the values of its inputs; the MAX, operator returns the sum of the
¢ highest inputs; the ATLEAST, operator returns the sum of its inputs if at
least ¢ of them are non-zero, otherwise returns 0. In [22], it is proved that
read-once formulas are in PTE.

In general, valuation functions in RO can express both complementarities
(through the ATLEAST, operator) and substitutabilities (through the MAX,
operator) between items. If we restrict our attention to the class of read-once
formulas that can use only SUM and MAX operators (here, MAX is a shortcut
for MAX, ), then only sub-additive valuations can be expressed. This restricted
class of read-once formulas is denoted RO in the following.

3.2 k-wise dependent valuations

The class of k-wise dependent valuations, which we denote Gy, has been defined
and analyzed in [8]. k-wise dependent valuations are defined as follows:

Definition 3. A wvaluation function f is k-wise dependent if the only mutual
interactions between items are on sets of cardinality at most k, for some constant
k > 0. In other words, the Gk class corresponds to all valuation functions f
such that the weights associated to nodes at level i in H;(f) are zero whenever
i > k.

K-wise dependent valuations can be represented using the k-wise depen-
dency graph, which makes it explicit the dependencies between item valuations.
For instance, in case of 2-wise dependent valuations, the 2-wise dependency
graph, denoted G5, is built as follows:

— let there be a node for every item;
— label node a with f(a);5

— if @ and b are super- or sub-additive, put an (undirected) edge (a,b) in the
graph, and label the edge with f(ab) — (f(a) + f(D)).

If f € Ga, the corresponding graph G2 can be used to calculate the valuation
of any possible bundle S as follows: consider the subgraph G° of G5 induced
by node set S; sum up all the node and edge labels in G°. An example of
2-wise dependency graph, and the corresponding valuation function, is reported
in Figure 2.

Note that functions in Gk might display both sub and super-additivity be-
tween items. Furthermore, contrary to most of the classes of valuation functions
described so far, k-wise dependent valuations might display costly disposal.

In [8], it is shown that valuations in Gk can be elicited in polynomial time
asking O(mF*) value queries.

6Slightly abusing the notation, we use a to denote both the item and the corresponding
node in the graph.
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Figure 2: Example of 2-wise dependency graph, and the corresponding valuation
function.

3.3 The Tool; class

The class of ToolboxDNF formulas, which we denote Toolg, has been introduced
in [22], and is defined as follows:

Definition 4. A function f is in Tooly, where t is polynomial in m, if it can
be represented by a polynomial p composed of t monomials (minterms), where
each monomial is positive.

For instance, polynomial p = 3a + 4ab+ 2bc+ cd corresponds to the function
which gives value 3 to item a, 0 to item b, value 9 to the bundle abc, and so on.
Note that if f € Tool, the only non-zero weights in Hy(f) are those associated
to the minterms of f.

ToolboxDNF valuations can express only substitutability-free valuations”,
and can be elicited in polynomial time asking O(mt) value queries [22].

3.4 The Tool_; class

This class of valuation functions is a variation of the ToolboxDNF class intro-
duced in [22]. The class is defined as follows.

Definition 5. Tool ¢ is the class of all the valuation functions f such that
exactly t of the weights in Hr(f) are non-zero, where t is polynomial in m. Of
these weights, only those associated to singletons can be positive. The bundles
associated to non-zero weights in Hy(f) are called the minterms of f.

In other words, the Tool_; class corresponds to all valuation functions that
can be expressed using a polynomial p with ¢ monomials (minterms), where

7A valuation function f is substitutability-free if and only if, for any Sy, Sy C I, we have

f(S1) + f(S2) < f(S1U S2).



the only monomials with positive sign are composed by one single literal. For
instance, function f defined by p = 10a + 15b+ 3¢ — 2ab — 3bc gives value 10 to
item a, value 23 to the bundle ab, and so on.

Theorem 1. If f € Tool_¢, where t is polynomial in m, then it can be elicited
in polynomial time by asking O(mt) queries.

Proof. The proof is an easy adaptation of the proof of Theorem 8 of [22]. First,
we ask the value of all the singletons, thus finding all the minterms of f of
cardinality 1. Then, we ask the value of the grand bundle, and we compare its
value with the linear valuation f;, which assigns the value f;(S) = > <5 f(a) to
any bundle. If f(I) = f;(I), then there are no other minterms for f, and we are
done. Otherwise, we repeatedly remove elements from the grand bundle, until
we find a minimal set S such that f(S1) < f1(S1), and f(S1—{a}) = fi(S1—{a})
for any a € S;. Bundle S;, which can be discovered asking at most m value
queries, is our next minterm. Preference elicitation is then continued re-defining
fi in order to account for the new minterm, as described in [22]. O

3.5 Interval valuation functions

The class of interval valuations is inspired by the notion of interval bids [18, 19],
which have important economic applications. The class is defined as follows.
The items on sale are ordered according to a linear order, and they can display
super-additive valuations when bundled together only when the bundle corre-
sponds to an interval in this order. We call this class of substitutability-free
valuations INTERVAL, and we denote the set of all valuations in this class as
INT.

An example of valuation in INT is the following: there are three items on
sale, a, b and ¢, and the linear order is a < b < ¢. We have f(a) = 10, f(b) = 5,
f(e) =3, f(ab) =17, f(be) =10, f(ac) = f(a) + f(c) = 13 (because bundle ac
is not an interval in the linear order), and f(abc) = 21.

The INT class displays several similarities with the Toolg class: there are
a number of basic bundles (minterms) with non-zero value, and the value of a
set of items depends on the value of the bundles that the bidder can form with
them. However, the two classes turn out to be not comparable with respect to
inclusion, i.e. there exist valuation functions f, f’ such that f € Tooly — INT
and f' € INT — Tool;. For instance, the valuation function corresponding
to the polynomial p = a + b+ ¢ + ab + bc + ac is in Tooly — INT, since
objects can be bundled “cyclically”. On the other hand, the valuation function
f of the example above cannot be expressed using a ToolboxDNF function.
In fact, the value of the bundles a, b, ¢, ab, bc and ac gives the polynomial
p' = 10a + 5b + 3¢ + 2ab + 2bc. In order to get the value 21 for the bundle abe,
which clearly include all the sub-bundles in p’, we must add the term abc in
p' with megative weight -1. Since only positive terms are allowed in Tooly, it
follows that f € INT — Tool.

What about preference elicitation with value queries in case f € INT? It
turns out that the efficiency of elicitation depends on what the elicitor knows



about the linear ordering of the objects. We distinguish three scenarios:

a) the elicitor knows the linear ordering of the items;

b) the elicitor does not know the linear ordering of the items, but the valu-
ation function f to be elicited is such that f(ab) > f(a) + f(b) if and only if a
and b are immediate neighbors in the ordering.

c) the elicitor does not know the linear ordering of the items, and the valua-
tion function to be elicited is such that f(ab) = f(a)+ f(b) does not imply that a
and b are not immediate neighbors in the ordering. For instance, we could have
a<b<e fab) > f(a)+ f(b), f(be) = £(b) + £(¢), and f(abe) > f(ab) + £(c)
(i.e., the weight of abc in H,(f) is greater than zero).

The following theorem shows that poly-time elicitation is feasible in scenarios
a) and b). Determining elicitation complexity under the scenario ¢) remains
open.

Theorem 2. If f € INT, then:
- Scenario a): f can be elicited in polynomial time asking M value
queries;

— Scenario b): f can be elicited in polynomial time asking at most m? —m+1
value queries.

Proof. We distinguish the two scenarios:

a) In this case f can be elicited asking m queries for the singletons, m — 1
queries for the interval two-item bundles, m — 2 queries for the interval
three-item bundles, and so on; i.e., w queries in total. Since these
are the only non-additive valuations in f, these queries are sufficient for
the elicitor to learn H;(f) (hence, f) correctly: the remaining weights in
Hi(f) are 0.

b) In this case, the elicitor in the worst case must ask the value of every
singleton and two-item bundle in order to identify the item linear order,
which can be uniquely identified given the m — 1 non-zero weights on the
second level nodes of Hy(f). Once the linear order is defined, elicitation
proceeds as in the previous case. In this case, the total number of queries
asked in the worst case ism+W+(m—2)+---+1:m2—m+l.

O

3.6 Tree valuation functions

A natural way to extend the INT class is to consider those valuation functions
in which the relationships between the objects on sale have a tree structure.
Unfortunately, it turns out that the valuation functions that belong to this class,
which we denote TREE, are not poly-query elicitable even if the structure of
the tree is known to the elicitor.

10
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Figure 3: The tree T used in the proof of Theorem 3.

Theorem 3. There exists a valuation function f € TREE that can be learned
correctly only asking at least 2™/% value queries, even if the elicitor knows the
structure of the tree.

Proof. For simplicity, assume m is even. Let us divide the set of items I into two
subsets S1, Sy of cardinality m/2, and let ¢ be an arbitrary bijection between
S and Ss. Let us order the items in S; according to an arbitrary linear order.
For every item in S; we add an edge to the following item in the linear order.
Then, we add an edge between any item a € S; and the corresponding item
¢(a) € So. It is immediate that the resulting graph is a tree, which we denote
T (see Figure 3). Let us consider an arbitrary valuation function f such that
the bundle relationships between items are described by T'. In order to learn f
correctly, the elicitor must ask the value of any possible bundle compatible with
T, i.e. the value of any bundle that corresponds to a connected subgraph of 7.
We claim that there are at least 2™/ such bundles.

To prove the claim, let us consider the connected subgraph of T' induced by the
items in Sy, which is a simple path. For every a € Sy, adding ¢(a) to Sy forms
a bundle which is compatible with 7. Thus, there exist at least 2511 = 2m/2
different ways of extending S; into a compatible bundle, and the theorem is
proved. O

However, if we impose the restriction that the super-additive valuations be
only on subtrees of the tree 7' that describes the item relationships, rather than

11



on arbitrary connected subgraphs of 7', then polynomial time elicitation with
value queries is possible (given that T itself can be learned in polytime using
value queries).

Theorem 4. Assume that the valuation function f € TREE is such that super-
additive valuations are only displayed between objects that form a subtree of T,
and assume that the elicitor can learn T asking a polynomial number of value
queries. Then, f can be elicited asking a polynomial number of value queries.

Proof. The proof is immediate by observing that, once the structure of 7T is
known, the number of possible proper subtrees of T is at most m — 2; in fact,
every node which is not the root of T" or a leaf is the root of exactly one subtree,
and T contains at least one leaf node. O

4 Generalized preference elicitation

In the previous section we have considered several classes of valuation functions,
proving that most of them are in PTE. However, the definition of PTE (and of
PQE) assumes that the elicitor has access to a description of the class of the
valuation to elicit; in other words, the elicitor a priori knows the class to which
the valuation function belongs. In this section, we analyze preference elicitation
under a more general framework, in which the elicitor has some uncertainty
about the actual class to which the valuation to elicit belongs.

We start by showing that the family of poly-query elicitable classes of valu-
ations is closed under union.

Theorem 5. Let Cq and Cy be two classes of poly-query elicitable valuations,
and assume that pr(m) (resp., p2(m)) is a polynomial such that any valuation
in C1 (resp., C2) can be elicited asking at most py(m) (resp., p2(m)) queries.
Then, any valuation in Cq |J C2 can be elicited asking at most p;(m)+p2(m)+1
queries.

Proof. Since Cj is poly-query elicitable, there exists a poly-query elicitation
algorithm A; for C;. This algorithm, taken as input a description of Cy (i.e.,
the elicitor knows that the function to elicit is in Cy), starts asking query qi;
given the answer to this query, decides the next query to ask ¢, and so om,
until elicitation is complete. Since C; is poly-query elicitable, this process is
guaranteed to end after at most p;(m) queries have been asked. A similar
algorithm A,, which asks at most ps(m) queries, exists for class Cy also.

Given algorithms A; and Ay, the algorithm A; |, to elicit any function f in
C1|JC2 works as follows. The elicitor has two working hypotheses: H; = {f
isin C1}, and Hs = {f is in Cz}. The goal of the elicitor is to ask queries
in order to resolve the uncertainty, showing that, given the answers to the
queries asked so far, only one of the two hypotheses holds. Once uncertainty
is resolved, elicitation continues using the A; algorithm correspondent to the
valid hypothesis. If uncertainty is never resolved, the elicitor can conclude that

12



f € C1NCx2, and elicitation is continued according to either A; or A, (they
are both correct elicitation algorithms for f).

W.l.o.g., assume the elicitor starts asking query ¢i. In other words, the elicitor
assumes that #; holds. Given the answer to ¢f, the elicitor checks whether
it is compatible with ;. If not, it concludes that H, holds, and continues
elicitation according to As. Otherwise, the elicitor checks whether the answer
to gi is compatible with Hs. If not, it concludes that H; holds, and continues
elicitation according to A;. If the answer to the first query is not sufficient
to resolve uncertainty, the elicitor ask query g3, checks for compatibility with
the hypotheses, and so on. In the worst case, all the answers to the queries
qf, ¢3,---,q, are compatible with #; (and with H,), so the elicitation process
based on H; stops after at most polynomially many queries have been asked. At
this stage, the elicitor is able to build a hypothetical learned function f; based on
the answers to queries ¢i, q3, ... ,q;. Now, the elicitor starts elicitation assuming
H> holds: it asks query ¢? (if not already asked), checks for compatibility with
Hi1 and Hs, and so on. This process stops when:

— uncertainty is resolved. In this case, if H; holds, the elicitor can correctly
conclude that f = fi; otherwise, it continues elicitation according to As.

— if uncertainty is not resolved, after asking at most ¢ < p2(m) queries the
elicitor can build a second hypothetical learned function fs.

In order to complete elicitation, the elicitor compares the value of fi; and f»
on all possible bundles. If there exists any bundle S such that fi(S) # f2(95),

then the elicitor asks query ¢(S), and concludes elicitation accordingly (f = f1
if f(S) = f1(S), f = f» otherwise); otherwise, it must be f = fi = f3 (i.e.,

feCy ﬂ C,).
To end the proof of the theorem, it is sufficient to observe that in the worst case
Ay 2 requires py (m) + p2(m) + 1 queries to complete elicitation. O

In the following theorem, we prove that the bound on the number of queries
needed to elicit a function in C; |J C2 stated in Theorem 5 is tight.

Theorem 6. There exist families of valuation functions Cy, Co such that either
C; can be elicited asking at most m — 1 queries, but C, U C2 cannot be elicited
asking less than 2m — 1 = 2(m — 1) + 1 queries (in the worst case).

Proof. Consider the class C; defined as follows: for every item a € I, there is
a function f¢ € Cy given by f2(0) =0, f¢({a}) =0, f&(I) =2, and f&(S) =1
for every other bundle S. We observe that the only uncertainty is in which
singleton bundle has value 0. Thus, any function in Cj is elicitable by asking at
most m — 1 value queries on singleton bundles (if none of these queries return
0, the query on the last singleton must return 0).

Now consider the class Co defined as follows: for every item a € I, there is
a function f§ € Cg given by f#(0) = 0, f§(I — {a}) = 2, f¥(I) = 2, and
f&(S) =1 for every other bundle S. We observe that the only uncertainty is in
which bundle of m — 1 items has value 2. Thus, any function in Cs; is elicitable
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by asking at most m — 1 value queries on bundles of size m — 1 (if none of these
queries return 2, the query on the last bundle of size m — 1 must return 2).

Now consider eliciting functions from C; UC2. The only queries where it is not
certain what the value returned will be are the 2m queries on bundles of size 1
or m — 1. Exactly one such query will return a value different from 1; but we
will not know which one until we have asked that query, or we have asked all
the other queries on bundles of size 1 or m — 1. It follows that we need at least
2m — 1 queries in the worst case. O

Theorem 5 shows that, as far as communication complexity is concerned,
efficient elicitation can be implemented under a very general scenario: if the
only information available to the elicitor is that f € C1J--- Cq(m), where
the C;s are in PQE and ¢(m) is an arbitrary polynomial, then elicitation can
be done with polynomially many queries. This is a notable improvement over
traditional elicitation techniques, in which it is assumed that the elicitor knows
exactly the class to which the function to elicit belongs.

Although interesting, Theorem 5 leaves open the question of the compu-
tational complexity of the elicitation process. In fact, the general elicitation
algorithm A, |, used in the proof of the theorem has a worst-case running time
which is super-polynomial in m. So, a natural question to ask is the following;:
let Cq and Cz be poly-time elicitable classes of valuations; Is the Cq | J C2 class
elicitable in polynomial time?

In the following, we show that the answer to this question is negative. In
order to prove the result, we define two classes of valuation functions:

Definition 6 (GY). A wvaluation function f in GY is defined by a valu-
ation function f' € Go (with only nonnegative weights on the edges), and
an upper bound u on the value of the bundles. The value of a bundle S is
f(S) = min{f'(S),u}. That is, f is the same as f' except its values cannot
ezxceed u.

A function f in GY is easy to elicit: ask all the singleton and two-item
bundles to get f’, as well as the grand bundle to get u.

Definition 7 (GYH). A valuation function f in GY® is also defined by a
valuation function f' € Go (with only nonnegative weights on the edges), and
an upper bound u on the value of the bundles. Except, for this class, there is
the additional constraint that no more than half the value of a bundle can come
from the edge weights. That is, f(S) = min{f'(S5),2) ,cq f'(a),u}. (We also
require that for f', the value placed on an edge of the graph does not exceed the
sum of its neighboring vertices, that is, f'(a,b) < 2(f'(a) + f'(b)).)

Again, a function f in GJH is easy to elicit: ask all the singleton and pair
bundles to get f’, as well as the grand bundle to get u.

Theorem 7. It is coNP-complete to tell if a given function f; in GY and a
given function fo in GYH (represented by their f' valuations and their u) are
identical or not. It follows that it is just as hard to determine a query that would
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distinguish them (because otherwise, we could easily tell if they were identical or
not).

Proof. The problem is in coNP because a bundle on which the functions are
different is a certificate for their inequality. To show the problem is coNP-hard,
we reduce an arbitrary CLIQUE problem instance (given by a graph G, and
a number k such that we want to find a set of k vertices with edges between
every pair of these vertices) to the following function distinguishing problem.
For both f; in GY and fo in GYH, let f’ be defined as follows. Its G5 graph
is the given G from the CLIQUE instance. The weight on every vertex is 1.
The weight on every edge is % Also, for both f; in GY and f, in GYH, let

2
u = 2k + e. We claim that (if epsilon is sufficiently small) the functions are
different if and only if there is a solution to the CLIQUE problem.

First suppose there exists a solution to the CLIQUE problem. Then, the
functions differ on the bundle corresponding to the clique of size k: fi’s value
on this bundle will be 2k + ¢, but f2’s value will be only 2k (because the vertices
contribute only k).

Now suppose there is no solution to the CLIQUE problem. Then to show
that (if epsilon is sufficiently small) the functions will be the same, we only have
to show that the constraint that the total value contributed by the edges cannot
exceed the total value contributed by the vertices is never binding. First, on
any bundle of size less than k, the total value of the edges will not exceed the
total value of the vertices. This is because even if the nodes constitute a clique
(of size less than k), the ratio of the total edge value to the total vertex value
is strictly less than that same ratio would be for a clique of size k — and for a
clique of size k this ratio only barely exceeds 1. Second, on any bundle of size
k, this ratio must also be smaller than 1, because there is at least one fewer
edge in this bundle than in a clique of size k (because there is no clique of size
k). Finally, if the total value of the edges exceeds the total value of the vertices
on a bundle of size greater than k, then the upper bound constraint u is the
binding constraint for both functions because 2(k + 1) > 2k + €. O

Despite the hardness result proved above, polynomial time preference elic-
itation is possible for the union set of several classes of valuations of practical
interest. In particular, we present a polynomial time algorithm that elicits cor-
rectly any function f € RO4m | Tool_¢ | Toolg | G2 |J INT. The algorithm
is called GENPOLYLEARN, and is based on the following set of theorems which
show that, given any f € Cp|JCaz, where Cy,Cy are any two of the classes
listed above, f can be learned correctly with a low-order polynomial bound on
the runtime.

Theorem 8. Assume that the elicitor only knows that the valuation function f
to be learned belongs to G2 |JROm. Then, the elicitor can learn f correctly

in polynomial time by asking at most W + 1 value queries.

Proof. If the f is in Gg, it can be learned correctly by asking the value of
every bundle of at most 2 items. Similarly, if f is in ROy, it can be learned
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correctly by asking the value of every bundle of at most 2 items [22]. In the
latter case, however, the answers to the queries on two-item bundles cannot
have arbitrary values. In fact, we have f(ab) = f(a) + f(b) if the least common
ancestor (LCA) of a and b in the read-once formula corresponding to f is a
SUM gate, and f(ab) = max{f(a), f(b)} if it is a MAX gate. Thus, if any
one of the answers to the queries on two-item bundles does not satisty f(ab) =
(f(a)+ f(b)) or (max{f(a), f(b)}) the elicitor knows that f must be in Gz, and
we are done.

Unfortunately, it could be the case that the answers to all the two-item queries
are compatible with the hypothesis that f € RO\, but actually f ¢ RO4ym.
For instance, suppose f(a) = 3, f(b) = 2, f(c) = 8, f(ab) = 3, f(bc) = 8 and
f(ac) = 8; then, the value of abc is 6 if f € Gg, while it is 8 if f € RO1m.
However, in this case one single query on a three-items bundle is sufficient
for the elicitor to learn f correctly. To identify the query to ask, the elicitor
builds the (unique) read-once formula coherent with the values of the singletons
and two-items bundles elicited, as described in Lemma 1 of [22] (here, we are
assuming that the individual items have nonzero valuation). Let 7' be the tree
corresponding to this formula, where the root of 7" represents the outcome of
the formula. Every non-leaf node in T is either a SUM or MAX operator, and
has at least two children. The elicitor scans T starting from the root, identifying
the MAX operator(s) of minimum depth. Let M, ..., M. be these operators.
Assume that at least one of them (say, M) has at least three children, denoted
Cy1, Cy, C5. If so, it is sufficient to ask the value of any bundle abc such that
a, b, and ¢ are leaf nodes contained in the subtrees rooted at Cp, Cs, and
Cj3, respectively; if f(abc) = max{f(a), f(b), f(c)}, then f must be in RO;m
(in fact, max{f(a), f(b), f(c)} is a 3-wise dependency between items, which is
excluded in valuations in class Gz), otherwise we must have f € Ga. Assume
now that all the M; have two children, but there exists at least one MAX gate,
say Mj, such that the subtree rooted at M; contains at least one MAX gate
(excluding M;). Let M denote one such gate. Both M; and M have at least
two children, denoted C}, C? and C*, C?, respectively. W.lo.g., assume M is
in the subtree rooted at C}. Let us consider any bundle abc such that a is in the
subtree rooted at C', b is in the subtree rooted at C2, and c¢ is in the subtree
rooted at C?. Asking the value of abc, the elicitor can determine to which
class the function to be learned belongs: if f(abc) = max{f(a), f(b), f(c)}, then
f € RO\, otherwise f € Ga. If none of the MAX gates M, ..., M. satisfy
one of the conditions above, it means that all the M; have two children, and that
there exists only SUM gates in the subtrees rooted at them. If all the subtrees
rooted at the M;s have at most two leaves, it means that f can be expressed
using both a read-once formula and a G5 graph; i.e., f € G2[VRO4pm. This
is because the MAX gate is the only operator that introduces dependencies
between item valuations; if all the subtrees rooted at the M;s have at most two
leaves, there are at most 2-wise dependencies between items, and the valuation
function is in Gy. Thus, f is learned correctly from the initial W queries,
using either the Gy graph or the read-once formula to calculate the value of f
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Figure 4: a) Subtree rooted at M; b) Corresponding portion of the G graph.

on any other bundle. Assume now that there exists at least one M;, say M,
such that the subtree rooted at M; has at least three leaves. Let us denote with
a, b, and ¢ any three of these leaves. Let us consider the paths P,, P, and P,
connecting a, b and ¢ to M; in the formula. Since all the gates in the subtree
rooted at M; are SUM gates, it follows that P,, P, and P, contain only SUM
nodes (excluding the starting and ending nodes of the path). Furthermore, since
M has two children, two of the three paths, say P, and Py, must have a non-
empty intersection (excluding the destination node M;j). The resulting subtree
structure is depicted in Figure 4.a. If f € RO4n, we must have f(abc) =
max{ f(a)+ f(b), f(c)}. On the other hand, the subgraph induced on G by the
node set abc has the structure shown in Figure 4.b, which gives a value equal to
f(a)+ f(b) + f(c) —min{f(a), f(c)} — min{ f(b), f(c)} to bundle abc. It follows
that, unless f(a)+ f(b) = f(c), asking the value of the bundle abc is sufficient for
the elicitor to determine whether f is in RO4n\ or in Go. If f(a) + f(b) = f(c),
the read-once formula and the G graph give the same valuation to the bundle
abc. It follows that, if no bundle abc as in the construction above such that
fla) + f(b) # f(c) exists, then f can be expressed using both a read-once
formula and the G2 graph. Then, f € G2 [VRO1M, and the value of f on any
bundle can be learned correctly from the initial M queries, using either
the G2 graph or the read-once formula. O

Theorem 9. Assume that the elicitor only knows that the valuation function f

to be learned belongs to Gz |J Tooly, with t polynomial in m. Then, the elicitor
. . . . +1

can learn f correctly in polynomial time by asking at most % + O(tm)

value queries.

Proof. The elicitor asks the value of every bundle of at most two items, and
uses the answers to these queries to build H;(f) up to level 2. If f € Gq,
then w(S) = 0 for every node in Hy corresponding to set S, with |S| > 2.
So, the problem is to verify whether there exists at least one node in Hj at
level > 2 with nonzero weight. Assume that f € Tool;. It is immediate that
w(S) > 0 if and only if bundle S is one of the minterms of f, and that w(S) =0
otherwise. If all the minterms of f are composed of at most two items, then we
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have f € Ga[()Toolg, and we are done. Otherwise, there must exist at least
one minterm S with at least three items, i.e. w(S) > 0 for some S with |S| > 2.
Since the weights in H;(f) cannot be negative if f € Toolg, the uncertainty can
be solved by asking the valuation of the grand bundle I if f(I) =} g g/<> w(S5)
then f € Gg and we are done; otherwise, it must be f € Toolg, and the function
can be elicited asking O(tm) value queries according to the procedure described
in the proof of Theorem 8 of [22]. O

Theorem 10. Assume that the elicitor only knows that the valuation function
f to be learned belongs to RO1m | Tooly, with t polynomial in m. Then, the
elicitor can learn f correctly in polynomial time by asking at most W +

O(tm) value queries.

Proof. The elicitor asks the value of every singleton. Then, the elicitor asks
the value of every two-item bundle, and it starts building the second level of
H;(f). If f € RO1m, then all the nodes in the second level of H; must have
weight < 0. In particular, if the LCA of a and b in the read-once formula
corresponding to f is a SUM gate, then we have w(ab) = 0; otherwise, the LCA
is a MAX gate, and we have w(ab) = —min{f(a), f(b)}. On the other hand,
if f € Toolg all the weights in H; must be positive. Thus, when the elicitor
meets the first non-zero weight for a two-items bundle, it can determine whether
f € RO4Mm or f € Toolg, and can complete the elicitation of f by asking at
most M + O(tm) value queries overall. If all the weights of the second
level nodes in H are zero, the elicitor can safely conclude that f € Toolg, and
it continues elicitation by asking O(mt) value queries overall. Note that the
elicitor’s decision is never wrong, since if f € RO4p and all the weights of the
second level nodes of H; are zero, then f must be the linear valuation function,
which trivially belongs to Tool also. O

Theorem 11. Assume that the elicitor only knows that the valuation function
f to be learned belongs to Go |JINT, and assume that, in case f € IN'T, we are
in the scenario a) or b) of Theorem 2. Then, the elicitor can learn f correctly
in polynomial time by asking at most m®> —m + 1 value queries.

Proof. Let us consider the more general case in which, in case f € INT, the
elicitor does not know the linear order of the items, but it can build this order
based on the valuation of the two-item bundles (scenario b) of Theorem 2). Note
that f € INT implies that all the weights associated to two-item bundles in H;
are positive. In fact, f € INT implies f(ab) > f(a) + f(b) for any ab. Thus,
the elicitor can follow the following strategy. It first asks the valuation of every
singleton; then, the valuation of every two-item bundles. During this process,
the elicitor builds the G5 graph. If G5 contains at least one edge with negative
weight, or it is not a line connecting the items, then the elicitor knows that
f € G2, and we are done. Otherwise, the elicitor knows that f € INT, and
continues elicitation asking the value of the bundles which are compatible with
the linear order induced by Gs, for a total of m? —m +1 value queries (including
the initial queries on singleton and two-item bundles). O
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Theorem 12. Assume that the elicitor only knows that the valuation function f
to be learned belongs to Tooly | JINT, with t polynomial in m. Further, assume
that, in case f € INT, we are in the scenario a) or b) of Theorem 2. Then, the
elicitor can learn f correctly in polynomial time by asking at most O(m(t +m))
value queries.

Proof. The elicitor starts asking the value of the singletons and two-item bun-
dles. Depending on the outcomes to two-item bundles queries, the elicitor tries
to build a linear order for the items. If any of the outcomes to the two-item
bundles queries is not coherent with the linear order built so far, the elicitor
concludes that f € Toolg, and preference elicitation can be completed by asking
O(mt+m?) = O(m(m +1t)) value queries overall. Otherwise, the elicitor is still
not able to determine to which class f belongs. However, only two scenarios are
possible:

— if f € INT, all the weights at levels greater than 2 in H;(f) are zero,
except for those associated to bundles which are compatible with the linear
order. The weights of these bundles might be negative.

— if f € Tooly, at most ¢ of the weights at levels greater than 2 in H;(f) can
be non-zero. These weights can be in arbitrary positions, but are strictly
positive.

The elicitor does not know which of the two scenarios actually holds, and it
has to figure it out a way to conclude, asking value queries only (and ounly a
polynomial number of them), which one of the two hypotheses actually holds.
Note that if f € Toolg (JINT both of the conclusions the elicitor might take
are correct.

In order to discover to which class f actually belongs, the elicitor asks the value
of the bundles compatible with the linear ordering which has been previously
computed. Based on the outcomes of these queries, the elicitor computes the
weights of the corresponding nodes in Hy(f) under the assumption that f € INT
(i.e., assuming that the remaining weights in the levels greater than 2 are 0).
Then, it takes its decision according to the following rule: if there exists at least
one strictly negative weight amongst the computed weights, then f € INT and
preference elicitation is done (asking O(m?) value queries overall); otherwise,
the elicitor concludes that f € Toolg, and it continues preference elicitation
as described in the proof of Theorem 8 of [22] (note that all the minterms of
cardinality at most 2 have already been discovered). In this case, the overall
number of value queries is O(m(m + t)).

In the following, we prove that the elicitor never takes the wrong decision. First,
assume that f € INT. Then, the weights calculated by the elicitor when it asks
the value of the bundles compatible with the linear order are correct, i.e. they
equal the actual weights of the valuation function f. If at least one of them is
strictly negative, then f is correctly identified as belonging to the INT class.
Otherwise, it must be f € Toolg () INT, and the elicitor’s conclusion f € Tooly
is again correct. In this case, the elicitor will ask further useless value queries
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(those needed to identify the minterms of f which, given that f € Tooly (JINT,
can only be bundles compatible with the linear order). However, these useless
queries are polynomially many, and polynomial time value query elicitation is
not impaired.

Assume now that f € Tool, — INT (we recall that the case f € Tooly (JINT
is not a problem for the elicitor). Let us denote with C the set of bundles of
cardinality at least 3 compatible with the linear order, and with M the set of
minterms of f of cardinality at least 3. Note that, since f € Tooly — INT,
we have M —C # 0. For any S € C, let w(S) denote the weight associated
to node S in Hy(f) as calculated by the elicitor. Since the elicitor calculates
w(S) under the wrong assumption that f € INT, this weight is in general
different from the actual weight w'(S) associated to S. In what follows we
prove that, for any S € C we have w(S) > 0. Since S is arbitrary, from this
fact it immediately follows that the elicitor, after asking all the value queries
associated to compatible bundles, correctly concludes that f € Toolg, and we
are dore.

Let h : M — C be the function that maps any bundle S € M into the bundle
S = h(S) € C such that S C S and S has minimum cardinality amongst all
the supersets of S in C. It is easy to see that, for any S € M, such a bundle
S exists and is unique. In fact, if S € M(C, then h(S) = S. Otherwise, we
must have |S| < m, since the grand bundle is compatible with any linear order.
This implies that for any S € M, at least a superset S D S in C always exists.
Let us now assume by contradiction that there exist distinct bundles S;, S, € C
such that |S1| = |S2] =c<m, S C 51,5 C S, and S ¢ S, for any other
S € C of cardinality at most ¢— 1. Since S C S; and S C S5, we must have that
S C SN S2 =S". On the other hand, S, S, € C implies that S’ € C and, given
that [S1| = |S2] = ¢ and S; # Sa, we have |S’| < ¢. This is a contradiction,
since S” would be a compatible bundle of cardinality strictly smaller than ¢ that
contains S.

We now prove that, for any S € C, we have:

w(S) —w'(S)= Y WS, (1)

Seh-1(S)—S

where h=1(S) denotes the reverse image of S in M, i.e., the set of all S € M
such that h(S) = S. From this, the theorem follows immediately by observing
that f € Tool implies that w'(S’) > 0 for any bundle S’. The proof is by
induction on |S|. If |S| = 3, then we have that h=!(S) = (), thus the right hand
term of (1) is 0. On the other hand, |S| = 3 implies that w(S) = w'(S) (i-e.,
the weight calculated by the elicitor is always correct when |S| = 3); thus, the
equality is satisfied. Let us now assume that the property holds for bundles of

cardinality at most ¢. We have:

wS) =fS)— > WS- D wS),

5/CS,|S<2 sec|s'cs
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On the other hand, we have:

w'(S) =) - > WS- D WS- D w(S).

51C8,|S7|<2 sec|s'cs Sem—c|3cs

Combining the two equalities, we can write:

w(S)—w'(S) == Y (W) -w( N+ Y, W(S).

S'ec|s'cS Sem-—C|5cS

Applying the inductive hypothesis, we obtain:

w(S) —w'(S)=— Y Yo w® )+ D WS

S'eC|S'CS \Seh-1(S")-S5’ Sem—c|5cs

Observing that each of the S C S’ for some S’ C S appears in exactly one of
the h™1(-) sets, we can rewrite the preceding equality as:

w(S)—w'(S) = — > w'(S)+ D w'(S).
SeM—C|Seh=1(S5")—S’, for some S'€C,S'CS Sem-—c|8cs

(2)
Let us now consider an arbitrary set S € M — C such that S € S. If S €
h=1(S"), for some S’ € C, S’ C S, then the corresponding weight appears both
in the first and second summation with opposite sign, and it is canceled. Thus,
the only remaining terms in the right hand side of (2) are those corresponding
to minterms S such S € h=1(S) — S, and we are done. O

Theorem 13. Assume that the elicitor only knows that the valuation function
f to be learned belongs to RO p |JINT, and assume that, in case f € INT,
we are in the scenario a) or b) of Theorem 2. Then, the elicitor can learn f
correctly in polynomial time by asking O(m?) value queries.

Proof. The elicitor first asks the value of every singleton. Then, it starts asking
the value of the two-item bundles, in any order. We recall than, in case f €
RO M, f(ab) = f(a) + f(b) if the LCA of a and b in the read-once formula
associated to f is a SUM gate, while f(ab) = max{f(a), f(b)} if the LCA is a
MAX gate. The corresponding weights on H;(f) are 0 and —min{f(a), f(b)},
respectively. On the other hand, if f € INT, we have that f(ab) > f(a) + f(b)
if @ and b are adjacent in the linear order, and f(ab) = f(a) + f(b) otherwise.
Thus, the weights associated to two-item bundles in H;(f) cannot be negative
if f € INT.

Based on the above observation, the elicitor follows the following strategy. As
long as it asks the value of the two-item bundles, it computes the corresponding
weights on Hy(f). The first time the elicitor encounters a non-zero weight, say
w(ab), it can safely take the right decision: f € ROym if w(ab) < 0, f € INT
if w(ab) > 0. In case f € INT, the elicitor continues preference elicitation
according to its decision, asking O(m?) total value queries. If all the weights
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associated to the two-item bundles in Hy(f) are zero, the elicitor decides that
f € INT, and continues elicitation accordingly. Note that if f € RO n and
all the weights of two-item bundles in H; are 0, then f corresponds to the
linear valuation function, which trivially belongs to INT also (since the linear
valuation has no super-addivities between items). So, the elicitor never takes
the wrong decision. O

Theorem 14. Assume that the elicitor only knows that the valuation function f
to be learned belongs to Tool_ | JINT, where t is polynomial in m, and assume
that, in case f € INT, we are in the scenario a) or b) of Theorem 2. Then, the
elicitor can learn f correctly in polynomial time by asking O(m(m + t)) value
queries.

Proof. The elicitor asks the value of every singleton, and builds the first level of
H;(f) accordingly. Then, the elicitor can resolve the uncertainty by asking the
value of the grand bundle: if f(I) < >, ., f(a), then it must be f € Tool_
(we recall that f € INT implies that f is substitutability-free); otherwise,
the elicitor can safely conclude that f € INT. Note that f € Tool ¢ and
f(I) = > ,cr f(a) implies that f is the linear valuation function, which trivially
belongs to IN'T. Once uncertainty is resolved, elicitation is continued according
to whether f € INT or f € Tool_g, asking at most O(m(m+t)) queries overall.

O

Theorem 15. Assume that the elicitor only knows that the valuation function
f to be learned belongs to Tool_¢|J Gz, where t is polynomial in m. Then, the
elicitor can learn f correctly in polynomial time by asking at most M +
O(tm) value queries.

Proof. The proof is a straightforward modification of the proof of Theorem 9.
O

Theorem 16. Assume that the elicitor only knows that the valuation function
f to be learned belongs to Tool_¢, | J Tooly,, where t; and ty are polynomial in
m. Then, the elicitor can learn f correctly in polynomial time by asking at most
m 4+ O(tmazm) value queries, where t,q, = max{ty,ts}.

Proof. The elicitor first ask the value of every singleton, then the value of the
grand bundle. If f(I) < >, ., f(a), then it must be f € Tool_¢,; on the other
hand, if f(I) > ", f(a), then it must be f € Tool,. In both cases, after the
uncertainty is resolved the elicitor continues elicitation accordingly. Finally, we
observe that f(I) = > ,.; f(a) and f € Tool ¢, |J Tooly, imply that f is the
linear valuation function. O

Theorem 17. Assume that the elicitor only knows that the valuation function
f to be learned belongs to Tool_¢ | JRO M, where t is polynomial in m. Then,

o i . R . m(m+1)
the elicitor can learn f correctly in polynomial time by asking at most ——— +
O(tm) value queries.
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Proof. The elicitor asks the value of every singleton and two-item bundles, and
compute the weights in the first two levels of H;(f) accordingly. If any of
the weights in the second level of H;(f) is not compatible with the hypothesis
f € ROsMm (ie., w(ab) = 0 or w(ab) = —min{f(a), f(b)}), then the elicitor
concludes f € Tool_¢, and completes elicitation asking W + O(tm) value
queries overall. Otherwise, the elicitor builds the (unique) read-once formula
F compatible with the weights in the first two-levels of H;(f) (here, we are
assuming that the individual items have nonzero valuation). Observe that if
F' is such that all the sub-trees rooted at MAX gates in F' have two leaves,
then the elicitor can safely conclude that f € Tool_;, and continues elicitation
accordingly (in fact, all the weights of non singleton bundles in the hypercube
representation of f are at most 0). Otherwise, asking the value of any bundle
abc such that items a,b and ¢ are leaves of a subtree rooted at a MAX gate
is sufficient to solve the uncertainty: if w(abc) > 0, then it must be that f €
RO n; otherwise, it must be that f € Tool_¢. This is because, if f € RO,
the weight associated to bundle abc in the hypercube representation of f equals

min{f(a), f(b), f(¢)} > 0. .

We are now ready to present our generalized poly-time elicitor, GENPOLYLEARN.
The algorithm, which is reported in Figure 5, is very simple: initially, the hy-
pothesis set Hp contains all the five classes. After asking the value of every
singleton, GENPOLYLEARN asks the value of every two-item bundles and, based
on the corresponding weights on H(f), discards some of the hypotheses. When
the hypotheses set contains at most two classes, the algorithm continues pref-
erence elicitation accordingly. In case Hp contains more than two classes after
all the two-item bundles have been elicited, one more value query (on the grand
bundle) is sufficient for the elicitor to resolve uncertainty, reducing the size of
the hypotheses set to at most two. The following theorem shows the correctness
of GENPOLYLEARN, and gives a bound on its runtime.

Theorem 18. Algorithm GENPOLYLEARN learns correctly in polynomial time
any valuation function in ROz |J Tool ¢ | Tool, | G2 |JINT asking at most
O(m(m +t)) value queries.

Proof. Tt is easy to see that all the decisions taken by the algorithm in steps
1-13 are correct. If after step 13 the size of Hp is still above 2, only the three
cases listed in steps 14-37 are possible. Let us consider each case separately.

— case 1. In this case, we have Hp= {Tool¢, G2, INT}. If f € G2, then all
the weights at levels greater than 2 in H;(f) are zero. So, if it turns out
that f(I) # > gcr,s/<2 w(S), the algorithm can safely discard hypothesis
G2 (step 20), and continues elicitation as in the proof of Theorem 12. On
the other hand, if it turns out that f(I) = > ¢/ |g)<2 w(S5), then Tool
can be safely excluded from the hypotheses set: in fact, f € Tooly and
f(I) =X scr,s1<2 w(S) implies that f € Gz. So, elicitation is continued
as in the proof of Theorem 11 (step 18).
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Algorithm GENPOLYLEARN:

0. Hp={RO+M,G2,TOOlt,TOOl_t,INT}
1. build the first level of H;(f) asking the value of singletons

. build the second level of H;(f) asking the value of two-items bundles in arbitrary order
. let w(ab) the computed weight for bundle ab
repeat
if w(ab) < 0 then
remove Tooly and INT from Hp
if w(ab) # —min{f(a), f(b)} then remove RO M from Hp
if w(ab)> 0 then
9. remove ROnm and Tool_t from Hp
10. if w(ab) is not compatible with the linear order discovered so far then
11. remove INT from Hp
12. until |[Hp| < 2 or all the w(ab) have been considered
13. if |Hp| < 2 then continue elicitation as described in theorems 8-17

© N e ek

otherwise:

14. case I: all the w(ab) weights are > 0 and compatible with the linear order, and
at least one weight is positive

15. ask the value of the grand bundle I

16. if f(I) =X gcr,5<2 w(S) then

17. remove Tool; from Hp

18. continue elicitation as in the proof of Th. 11
19. else

20. remove Gz from Hp

21. continue elicitation as in the proof of Th. 12

22. case 2: all the w(ab) weights are < 0, at least one weight is negative, and RO41m €Hp
23. ask the value of the grand bundle I

24, if f(I)# ng,mgw(S) then

25. remove G2 from Hp

26. continue elicitation as in the proof of Th. 17
27. else

28. remove Tool_¢ from Hp

29. continue elicitation as in the proof of Th. 8

30. case 3 w(ab) =0 for all ab
31. ask the value of the grand bundle I

32. if f(I) <X7,¢; f(a) then

33. remove INT, Toolg, G2, RO4m from Hp
34. f € Tool_¢; continue elicitation accordingly
35. else

36. remove Tool_¢, G2, RO4nm from Hp

37. proceed as in the proof of Th. 12

Figure 5: Algorithm for learning correctly any valuation function in ROn
Tool_¢ | Tool; |J G2 JINT asking a polynomial number of value queries.
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— case 2. In this case, we have Hp= {Tool_¢, G2, RO 1nm}. Again, if
fUI) # Yscrsj<2w(S), then Gz can be safely discarded, and elici-
tation is continued as in the proof of Theorem 17 (step 26). On the
other hand, if it turns out that f(I) = > gc; g <> w(5), then Tool
can be safely excluded from the hypotheses set: in fact, f € Tool ¢ and
f(I) =X scr,s1<2 w(S) implies that f € Gz. So, elicitation is continued
as in the proof of Theorem 8 (step 29).

— case 3. In this case, we have Hp= {Tool_, G2, RO;n,INT, Tool.}.
Again, asking the value of the grand bundle is sufficient to solve uncer-
tainty: if f(I) < ),c; f(a), then INT and Toolg can be excluded from
Hp, since these classes include only substitutability-free valuations. On
the other hand, if f € G2 and all the w(ab) weights are zero, then f
is the linear valuation function. This is incompatible with the fact that
J(I) <> .cr f(a), so also Ga can be removed from Hp. The same argu-
ment applies for RO since all the w(ab) weights are zero, all the inputs
of the read-once formula have a SUM gate as LCA, i.e., f is the linear
valuation function. So, at step 34, the algorithm correctly concludes that
f € Tool_¢, and continues elicitation accordingly. On the other hand, if
F(I) >3 ,c; fa), then the Tool ¢ class can be safely discarded. In fact,
given that w(ab) = 0 for every ab, the only possibility for a function f in
Tool_; to verify f(I) > >, ., f(a) is to be the linear valuation function,
which trivially belongs to any of the other classes. A similar argument ap-
plies to the G and RO, classes. Thus, the algorithm can safely remove
Tool ¢, G2 and RO, from Hp, and continues elicitation accordingly
(step 37).

O

From the bidders’ side, a positive feature of GENPOLYLEARN is that it asks
relatively easy to answer queries: valuation of singletons, two-item bundles, and
the grand bundle. (In many cases, the overall value of the market considered —
e.g., all the spectrum frequencies in the US — is publicly available information.)

5 Towards characterizing poly-query elicitation

In the previous sections we have presented several classes of valuation functions
that can be elicited asking polynomially many queries, and we have proved that
efficient elicitation can be implemeted in a quite general setting. In this section,
we discuss the properties that these classes have in common, thus making a
step forward in the characterization of what renders a class of valuations easy
to elicit with value queries.

We first observe that the results obtained in the related problem of learning
concepts using membership queries (see, for instance, [1, 10, 12]) cannot be
directly applied in our context. In fact, a concept in the machine learning
theory is defined essentially in terms of its characteristic function: we have
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a set of instances (bundles, using our terminology), and a certain concept is
defined by specifying which of the instances satisfy the concept. Translated into
our framework, this corresponds to allowing only boolean valuation functions,
in which the value of a bundle S is 1 if S satisfies the target concept, and 0
otherwise. So, only negative results obtained in the concept learning theory can
be useful in our framework (and we will actually use one of these results below).
However, some of the notions and techniques used in concept learning, once
properly adapted to the preference elicitation setting, turned out to be useful
to our positive purposes.

Let us consider a certain class C of valuations. Essentially, we have seen
that if C is “sufficiently structured”, then valuations in C are easy to elicit
under the assumption that the fact the function to elicit is in C is known to
the elicitor. In other words, if the elicitor knows that a valuation has certain
features, it can take advantage of this knowledge to infer the value of many other
bundles without asking all the queries. If C is structured enough, polynomially
many queries are sufficient to learn all the (exponentially many) values. In the
following, we make this argumentation more formal.

Let C be a class of valuations, f any valuation in C, and A¢ an elicitation
algorithm for C8. Let Q be an arbitrary set of value queries, representing the
queries asked by Ac at a certain stage of the elicitation process. Given the
answers to the queries in Q, which we denote Q(f) (f is the function to be
elicited), and a description of the class C, Ac returns a set of learned values
Ve (Q(f)). This set obviously contains any S such that ¢(S) € Q; furthermore,
it may contain the value of other bundles (the inferred values), which are inferred
given the description of C and the answers to the queries in Q. The elicitation
process ends when Ve (Q(f)) = 2L,

Definition 8 (Inferability). Let S be an arbitrary bundle, and let f be any
function in C. The f-inferability of S w.r.t. C is defined as:

INj,c(S) = min{|Q] s.t. (¢(5) ¢ Q) and (5 € Vc(Q(f)))} -

If the value of S can be learned only by asking q(S), we set INyc(S) =2™ —1.
The inferability of S w.r.t. to C is defined as:

INc(S) = IN S) .
c(S) I}ﬂeag f,c()

Intuitively, the inferability® of a bundle measures how easy it is for an elici-
tation algorithm to learn the value of S without explicitly asking it.

Definition 9 (Polynomially-inferable bundle). A bundle S is said to be
polynomially-inferable (inferable for short) w.r.t. C if INc(S) = p(m), for
some polynomial p(m).

8In the following, we assume that the elicitation algorithm is a “smart” algorithm for C,
i.e. an algorithm which is able to infer the largest amount of knowledge from the answers to
the queries asked so far.

9When clear from the context, we simply speak of inferability, instead of inferability w.r.t.
C.
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Definition 10 (Polynomially non-inferable bundle). A bundle S is said
to be polynomially non-inferable (non-inferable for short) w.r.t. C if INc(S) is
super-polynomial in m.

Definition 11 (Strongly polynomially non-inferable bundle). A bundle
S is said to be strongly polynomially non-inferable (strongly non-inferable for
short) with respect to class C if Vf € C, INf c(S) is super-polynomial in m.

Note the difference between poly and strongly poly non-inferable bundle: in
the former case, there exists a function f in C such that, on input f, the value
of S can be learned with polynomially many queries only by asking ¢(S); in the
latter case, this property holds for all the valuations in C.

Definition 12 (Non-inferable set). Given a class of valuations C, the non-
inferable set of C, denoted NIg, is the set of all bundles in 2! that are non-
inferable w.r.t. C.

Definition 13 (Strongly non-inferable set). Given a class of valuations C,
the non-inferable set of C, denoted SNIg, is the set of all bundles in 27 that
are strongly non-inferable w.r.t. C.

Clearly, we have SNIc C Nig. The following theorem shows that for some
class of valuations C the inclusion is strict. Actually, the gap between the size
of SNI¢ and that of NIc can be super-polynomial in m.

The theorem uses a class of valuations introduced by Angluin [1] in the
related context of concept learning. The class, which we call RDNF (Re-
stricted DNF) since it is a subclass of DNF formulas, is defined as follows. There
are m = 2k items, for some k > 0. The items are arbitrarily partitioned into
k pairs, which we denote S;, with i = 1,...,k. We also define a bundle S of
cardinality k such that Vi, |S; (S| = 1. In other words, S is an arbitrary bundle
obtained by taking exactly one element from each of the pairs. We call the S;s
and the bundle S the minterms of the valuation function f. The valuations in
RDNF are defined as follows: f(S) = 1 if S contains one of the minterms;
f(S) =0 otherwise.

Theorem 19. We have |SNIrpnr| =0, while [NIrpNr| s super-polynomial
m m.

Proof. We first prove that |SNIgpnr| = 0. Let f be any function in RDNF,
and let Sy,...,Sk,S be its minterms. Let S be an arbitrary bundle, and as-
sume that S is not a minterm. Then, the value of S can be inferred given the
answers to the queries Q' = {q(S1),...,q(Sk),q(S)}, which are polynomially
many. Thus, S is not in SNIgpNF. Since for any bundle S there exists a
function f in RDNF such that S is not one of the minterms of f, we have that
SNIRDNF is empty.

Let us now consider NIgpnF. Let S be an arbitrary bundle of cardinality k,
and let f be a function in RDNF. If S is one of the minterms of f (i.e., S = 5)
the only possibility for the elicitor to infer its value is by asking the value of

27



all the other bundles of cardinality &k (there are super-polynomially many such
bundles). In fact, queries on bundles of cardinality < k of > k + 1 give no
information on the identity of S. So, S is in NIrpnr. Since for any bundle S
of cardinality k there exists a function f in RDNF such that S is a minterm of
f, we have that NIgrpNF contains super-polynomially many bundles. O

The following theorem shows that whether a certain class C is in PQE
depends to a certain extent on the size of SNIc.

Theorem 20. Let C be an arbitrary class of valuations. If the size of SNI¢
is super-polynomial in m, then C ¢ PQE.

Proof. Assume by contradiction that there exists an elicitation algorithm that,
given any function f € C and a description for C, learns f asking polynomially
many queries. This means that, for any such function f, there exists a set of
queries Q of polynomial size such that, for all S € 27, S € V(Q(f)). Thisis true
in particular for the strongly non-inferable bundles. On the other hand, denoting
with S an arbitrary strongly non-inferable bundle and observing that Q has
polynomial size by assumption, we have that S € Vg (Q(f)) implies ¢(S) € Q.
Since there are super-polynomially many strongly non-inferable bundles, this
would imply that the size of Q is not polynomial in m — contradiction. O

Theorem 20 states that a necessary condition for a class of valuations C to
be easy to elicit is that its strongly non-inferable set has polynomial size. Is this
condition also sufficient? The following theorem gives a negative answer to this
question, showing that even classes C with an empty strongly non-inferable set
may be hard to elicit.

Theorem 21. The condition |SN Ic| = p(m) for some polynomial p(m) is not
sufficient for making C easy to elicit with value queries. In particular, we have
that |SNIRDNF‘| = 0, and RDNF ¢ PQE

Proof. The proof follows immediately by the fact that the RDNF class, whose
strongly non-inferable set has size 0, is hard to elicit with value queries (see [1]).
O

Theorem 21 shows that the size of the strongly non-inferable set alone is not
sufficient to characterize classes of valuations which are easy to elicit. Curiously,
the size of the non-inferable set of RDINF is super-polynomial in m. Thus, the
following question remains open: “Does there exist a class of valuations C such
that | NIc| = p(m) for some polynomial p(m) and C ¢ PQE?” or, equivalently,
“Is the condition |NI¢c| = p(m) for some polynomial p(m) sufficient for making
C poly-query elicitable?”

Furthermore, Theorem 21 suggests the definition of another notion of poly-
query elicitation, which we call “non-deterministic poly-query elicitation” and
denote with NPQE. Let us consider the RDINF class used in the proof of The-
orem 19. In a certain sense, this class seems easier to elicit than a class C with
|SNIc| superpolynomial in m. In case of the class C, any set of polynomially
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many queries is not sufficient to learn the function (no “poly-query certificate”
exists). Conversely, in case of RDNF such “poly-query certificate” exists for
any f € RDNF (it is the set Q' as defined in the proof of Theorem 19); what
makes elicitation hard in this case is the fact that this certificate is “hard to
guess”. So, the RDNF class is easy to elicit if non-deterministic elicitation is
allowed. The following definition captures this concept:

Definition 14 (NPQE). 4 class of valuations C is said to be poly-query non-
deterministic (fully) elicitable if there exists a nondeterministic elicitation al-
gorithm which, given as input a description of C, and by asking value queries
only, learns any valuation f € C asking at most p(m) queries in at least one
of the nondeterministic computations, for some polynomial p(m). NPQE is the
set of all classes C that are poly-query nondeterministic elicitable.

It turns out that non-deterministic poly-query elicitation can be character-
ized using a notion introduced in [10], which we adapt here to the framework of
preference elicitation.

Definition 15 (Teaching dimension). Let C be a class of valuations, and
let f be an arbitrary function in C. A teaching set for f w.r.t. C is a set of
queries Q such that Vo (Q(f)) = 2L, The teaching dimension of C is defined as

TD(C) = r}aaé( min{|Q| s.t. (QC 221) and (Q is a teaching set for f)} .
€

Theorem 22. Let C be an arbitrary class of valuations. C € NPEQ if and
only if TD(C) = p(m) for some polynomial p(m).

Proof. Let us assume that C is in NPQE. Then, there exists a non-deterministic
algorithm A which, given in input a description of C and chosen any function
f € C, elicits f by asking at most polynomially many queries in at least one of
the non-deterministic computations. Let Q be the set of queries asked by A in
one of these computations. It is immediate to see that Q is a teaching set for f.
Since such a polynomial size teaching set exists for any f € C, it follows that
TD(C) is polynomial in m.

Let us now assume that 7'D(C) is polynomial in m. Then, for any f € C
there exists at least one teaching set of polynomial size. This teaching set
corresponds to one of the non-deterministic computations of an algorithm A
that asks the queries according to an arbitrary order; this computation, which
asks polynomially many queries, ends after all the queries in the teaching set
have been asked (here, we assume that A is a “smart” algorithmm). So, for any
f € C at least one of the non-deterministic computations of A ends after asking
polynomially many queries, i.e., C € NPQE. O

The following result is straightforward by observing that RDINF is in NPQE
(it has O(m) teaching dimension) but not in PQE:

Proposition 2. PQE C NPQE.
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6 Conclusions and future research

In this paper we have investigated in detail the problem of preference elicitation
with value queries in CAs. It is known that efficient elicitation in this setting
is not feasible unless some restrictions one the bidders’ valuations are imposed.
We have considered several classes of structured valuations in which efficient
elicitation is possible, and proved that if C; and C2 are classes of “easy to elicit
with value queries” valuations, also the class Cq |J C2 has this property. This
result concerns communication complexity, and it does not consider the compu-
tational complexity of identifying the queries to ask. We have proved that there
exist classes of “easy to elicit with value queries” valuations Ci, Cs such that
eliciting a function in C; | C2 can be done asking polynomially many queries,
but identifying the queries to ask is NP-complete. Despite this hardness result,
we have presented an efficient polynomial time elicitation algorithm which, given
any valuation function f in RO;pm J Tool ¢ |J Tooly | G2 |J INT, learns f
correctly.

We have also made some considerations on what renders a certain class of
valuations “easy to elicit with value queries”, proving a necessary condition for
efficient elicitation with value queries. We have also introduced the concept of
non-deterministic poly-query elicitation, and proved that a class of valuations is
non-deterministically poly-query elicitable if and only if its teaching dimension
is polynomial in the number of items on sale.

Overall, we believe the results presented in this paper constitute a significant
step forward towards the characterization of efficient preference elicitation with
value queries in CAs. Nevertheless, several issues remain open, stimulating
further research on this topic. In particular, the problem of identifying sufficient
conditions for making a class of valuations “easy to elicit with value queries”
remains open.
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