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Tech Bubbles: what they produce?

T ———

* Late 80s ... cheap microprocessors, no applications
— But had brought millions of pcs to business/home

* Late 90s ... end of the dot-com boom
— But the Internet infrastructure was built for most

* Early 2010s ... peak of the social boom

YOU DON'T

— Facebook 37 “country”,

ENEMPES
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What are we building for the next generation?

“This Tech Bubble Is Different.”
A. Vance, Businessweek, 04/17/2011
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Social Media & Computing

\

* The next generation could be the one with access
to an unprecedented amount of behavioral data

\‘gé;‘:

* This can solve real problems

.. not just finding a movie or a restaurant!
— ensuring energy efficiency
— monitoring our environment

— extend access to infrastructure

— informing public decision




€ .
Data is web’s new oi

—

A :
nd key to our society’s future!

«you think you are Google’s customer?

You .
m ' Gmazil

De facto, youare Google’s
S. Vaidhyanathan (2011)

product!”

Who produces this oil?
Who owns it? benefits from it?
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We have a problem ..
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* Transactional Privacy, a primer
— Need for alternative economic approach to privacy

* Highlights:
— Can we practically build TP?
— The real reasons why it may not work
— Can it be incrementally deployed?

* Concluding remarks
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The Privacy Tussle

Online Service Providers, Users, Associations,
Data Brokers, Aggregators Journalists, governments
More monetization of Stop the erosion of privacy?
personal information Regulate?



What complicates the Tussle

T —m——

* No limitation on 3" party tracking
— Permission ultimatum (Android, FB, Apple)
— Aggregation (Re-targering, FB connect, quasi-logout)
— Reselling (Rapleaf, bluekai, Google DDP)

* Privacy is difficult to perceive and to protect
— Behavioral: Immediate gratification, illusion of control
— Technical: inference (e.g. differential privacy)
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Technical solutions

T ——

* Privacy preserving techniques
— Anonymization: Tor, Obfuscation: TrackMeNot
— Self-destructing data: Vanish
— Monitoring: Dynamic Taint Analysis
— Privacy-Preserving services: AdNostic, Privad, Repriv

* Not adopted, for 2 reasons:
1. little user incentive, “privacy is not enough”

2. lgnores data’s value, “really socially optimal”’
. HogIpE CSW
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Fix the economy first!
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Transactional Privacy in a nutshell

T ———

* Principle 1: A relaxed definition of privacy

— |Is privacy the state of being free from observation?
.. or know and control who uses what about you?

— We do not hide data, rather we enforce payment for
their commercial use.

* Principle 2: A separation of powers

— Who should decide what?

— User “whatis for sale?”
market “what is it worth?”’




Privacy as usual vs. Transactional Pr.

T ——

Goal: free from observation Goal: free from exploitation
* Adversary: * Adversary:
honest but curious malicious but rational
* Hard problem, requires * Potentially easier
— data through queries — raw data
— Estimate privacy violation works with any algorithm
as negative externalities — simpler
* Many source of leakage * Inference is mostly useless
- reselling — Brings no additional value
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Economic solution to privacy

The price of free
https://github.com/ManConley/Price-of-Free/

, L , THE WALLSTREFTJOURMAL
1. Provide the right incentive to users =5 2 =¥ EES
— A perception of their data value == STty
— Information leakage = market arbitrage W' ~10m
1 4Good O K1 (;'\n 2012
2. Improve the new data economy G0 0Bl > Lobby 249

oogle
— More transparent: give user a control

— More democratic: let the best tech (not data) win!
— More efficient? Avoid public campaigns, more data

) ) ) a‘?
Nice butis It practic
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* Transactional Privacy, a primer
— Need for alternative economic approach to privacy

* Highlights:
— Can we practically build TP?
— The real reasons why it may not work
— Can it be incrementally deployed?

* Concluding remarks
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TP for web-browsing

web site data buyer . Data prOteCtion
e.g., cnn.com e.g., Groupon) s .
eoonem] [ Mix network anonymize
s | [P Po” { IP address + cookies }

Sestertius pablore Data to sale+ Pricing
Table unlim. supply auction

I lDreal > (leixed)*

Table . Revelation

IPfixed 2> (IPrandom)

mix network

HTTP request
IP real

| Only those who pald can
" | plugin access the users identity
*‘ during an impression

~ o dilbrowser

ng2I6LIIN2
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1. How to protect data?
e

* We don’t protect to protect, we protect to sell later
— Enough to make misbehavior economically inefficient

* What to sell? The really simple user Interface

— How much do you value N
this bit? TOO HARD o

EO.?*

— Would you put this bit on 209

o
Sosf

the market? A BIT EASIER Eou:
— Tune a simple scroll bar :

0 0.2 04 06 038
personal freq



2. How to Price Private Data?

T ——

1. As a function of User’s loss?
— Differential privacy + auctions [Ghosh-Roth11]
— hard to put into practice: bid leaks, users’ assessment
2. As afunction of Provider’s benefit?
— Can be thought of as a coalition game [Kleinbergo1]
— Requires truthful revelation of value

* Run an auction (with unlimited supply)



The personal data auction

T ——

* For sale: identifying your browsing in [t;t+1]
* Unlimited supply auctions
— Sell your personal data to multiple purchasers

— Every purchaser indicates a maximum price p;«
—~ User’srevenue R ((pix)reic,p) = Zp X Lip<ps o1
ke

exp (eR ((pi,x)rex,p)) v(p)
Iy exp (eR ((pik)kek, s)) v(s)ds

— Run exponential mechanism:
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* Data obtained through de-anonymizer

— The purchasers who won the auction are given the
associating function IP-fake/IP-real for this user

— Raw information: could be used for any algorithms
— Real time: can be used for immediate action
* Re-run the bidding process periodically
— Purchasers can infer users’ profile from history
— But they can’t use it!
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Case Study

Mobile Web browsing
large city, ~200k users

Online Coupon Dealers
crawl yipit.com

Information released by
decreasing popularity

A
)
>
c
o
>
@)
S

—_
o
T

Revenue vs. disclosure:
0 rdeacs A sweet spot!

9% info released

s una1e16926Qq

Confirms previous results on use of personal information Blmprove
click-entropy (See [Krause-Horvitz 2008]).
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* Transactional Privacy, a primer
— Need for alternative economic approach to privacy

* Highlights:
— Can we practically build TP?
— The real reasons why it may not work
— Can it be incrementally deployed?

* Concluding remarks
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“This will not work because ...

T ———

“I can resell your information to 1000 people”

“wait, | can even sell information about my friends!”

— BUT you can’t sell access to info for commercial use!
“To bid, companies need information anyway”’

— True, but for the same reason they can’t monetize it
“You give away value of statistical information”

— Indeed, it becomes a public good. It’s a feature!
“Price discrimination becomes unprofitable”

— Is that certain? Is that a bad thing?
B |



“Still this will not work as ...

T ———

“Tor is too slow anyway, and you can attack it”

— Something much lighter, since we only need to raise
the bar. Companies care about reputation

“wouldn’t disclosing bulk of data scare users?
today’s ecosystem relies on their ignorance”

— Aim at transparency; eventually users should know.

“wouldn’t it encourage users to over-expose.”
- Yes, which is why not all information can be traded

. HoaT AL CSW
AL



Why indeed it may not work

T ———

“What if users forge bogus data?”

“And get compensated for it, at the limit it means these
signals are useless”

— still open problem: some data are verifiable
“What if there is there is not enough per user?”
‘“and they won’t bother for 2c a month”

— still open problem: (1) we still have to make the math
as the pie may grows, (2) we could make it more
attractive: lottery, pay with services

5 (
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“Why Johnny can’t opt-out”

* Current choice:

(b) user blocks tracking




Tomorrow possible’s vision
e

o O
S == ) o
(e) direct market (f) mediated market

* But this creates initially some revenue loss

— is there a deployment that is incentive compatible?




A closer view at today’s ads

T —m——

* Using multiple traces (Residential, Mobile, Campus)
— And a simple model of Cost-Per-Mille
CPM (u,p,a) = RON, x TQM, x Z,(u)
— RON is base price, TQM quality of site
* lis the “Intent” of user u as seen by aggregator a
I1,(u) udonothing
To(u) = { EI(u) usellsdatatoa
1 u block tracking
— Estimated using categories and browsing + adwords
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Characterizing Deployment

T ———

* Deployment under two scenarios:

_ El(u) -1
- LEt Tu,a - IIa(u) 1

— r>1 because explicit intent is larger than implicit

““consented tracking ratio”

— relates intuitively to user’s bargaining power
* Market deployment as a coalitional game

— Prop: In a direct market, distributing revenue
according to Shapley value (i.e. under fairness
axioms) is incentive compatible iff r>2

— Prop: In a mediated market, it is iff r>3/2
; SOCIAL CS



Distinguishing 15t and 3" party

T ———

Publishers Aggregators
* Make impressions * Track users and play ads
Publisher Frac. Rev. | Frac. Users | Category Frac. | Frac. | Frac.
facebook.com 0.09 0.15 society Aggregator Rev. | Users | Pubs.
google.co.uk 0.04 0.11 | computers Google 0.18 0.17 0.80
bbc.co.uk 0.03 0.07 arts Facebook 0.06 0.09 0.23
fbedn.net 0.03 0.13 society GlobalCrossing (AdMob) 0.04 0.11 0.19
twitter.com 0.03 0.04 | computers AOL 0.03 0.04 0.07
yahoo.com 0.03 0.04 | computers Microsoft 0.03 0.04 0.17
google.com 0.02 0.18 | computers Omniture 0.03 0.05 0.07
skysports.com 0.02 0.04 regional Yahoo! (AS42173) 0.03 0.04 0.07
premierleague.com 0.01 0.01 regional Internap (RevSci) 0.02 0.03 0.01
ebay.com 0.01 0.02 | shopping Quantcast 0.02 | 0.03 | 0.09
Yahoo! (AS43428) 0.01 0.03 0.11
* Largest # more profitable * Revenue more skewed

» SOCTAL CSGb
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The power of large aggregators

T —m——

* Largest aggregators have specific advantage
— Implicit intent: based on what aggregator can infer
— Explicit intent # implicit intent

* But implicit intent is still not perfectly accurate
— Leaving users some bargaining power

PDF

00 01 02 03 04 05
CDF

00 02 04 06 08 1.0

Inferred Intent (ll(u,a) 33




Concluding remarks

T —m——

* We need to explore alternative approaches to
privacy with an economic angle

— Transactional privacy focuses on keeping data in
control of which data is used and how

* Encouraging observations

— Revenue vs. disclosures exhibits a sweet spot
— Data revelation can exhibit mutual benefits

* Not shown today: adoption, location privacy

B



—
Thank you!
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