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*  Late	
  80s	
  …	
  cheap	
  microprocessors,	
  no	
  applications	
  
− But	
  had	
  brought	
  millions	
  of	
  pcs	
  to	
  business/home	
  

*  Late	
  90s	
  …	
  end	
  of	
  the	
  dot-­‐com	
  boom	
  
− But	
  the	
  Internet	
  infrastructure	
  was	
  built	
  for	
  most	
  
* Early	
  2010s	
  …	
  peak	
  of	
  the	
  social	
  boom	
  

− Facebook	
  3rd	
  “country”,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
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Tech	
  Bubbles:	
  what	
  they	
  produce?	
  



	
  
What	
  are	
  we	
  building	
  for	
  the	
  next	
  generation?	
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Today	
  

“The	
  bes
t	
  mind	
  of	
  m

y	
  genera
tion	
  are	
  

thinking
	
  about	
  

how	
  to	
  make	
  peop
le	
  click	
  a

ds.”	
  J.	
  H
ammerbache

r	
  

“This	
  Tech	
  Bubble	
  Is	
  Different.”	
  	
  
A.	
  Vance,	
  Businessweek,	
  04/17/2011	
  
	
  



* The	
  next	
  generation	
  could	
  be	
  the	
  one	
  with	
  access	
  
to	
  an	
  unprecedented	
  amount	
  of	
  behavioral	
  data	
  
* This	
  can	
  solve	
  real	
  problems	
  
…	
  not	
  just	
  finding	
  a	
  movie	
  or	
  a	
  restaurant!	
  
− ensuring	
  energy	
  efficiency	
  
− monitoring	
  our	
  environment	
  
− extend	
  access	
  to	
  infrastructure	
  
−  informing	
  public	
  decision	
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Social	
  Media	
  &	
  Computing	
  



And	
  key	
  to	
  our	
  society’s	
  future!	
  
	
  
	
  
	
  
	
  

Who	
  produces	
  this	
  oil?	
  	
  	
  	
  
Who	
  owns	
  it?	
  benefits	
  from	
  it?	
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“Data	
  is	
  web’s	
  new	
  oil”	
  

De	
  facto,	
  you	
  are	
  Goog
le’s	
  product!”	
  

	
  	
   	
  S.	
  Vaidhyanathan	
  (201
1)	
  

“You	
  think	
  you	
  are	
  Goo
gle’s	
  customer?	
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We	
  have	
  a	
  problem	
  …	
  

“Privacy	
  challe
nges	
  do	
  not	
  an

d	
  must	
  not	
  require
	
  us	
  to	
  

forego	
  the	
  be
nefits	
  of	
  Netw

ork	
  and	
  Inform
ation	
  Technolo

gy	
  

(NIT)	
  in	
  addre
ssing	
  national

	
  priorities.	
  	
  

Rather,	
  we	
  need	
  a	
  pract
ical	
  science	
  of

	
  privacy	
  prote
ction,	
  

based	
  on	
  fund
amental	
  advance

s	
  in	
  NIT,	
  to	
  pro
vide	
  us	
  with	
  

tools	
  we	
  can	
  use	
  to	
  re
concile	
  privac

y	
  with	
  progress.”
	
  	
  

PCAST	
  Report
	
  to	
  the	
  Preside

nt	
  and	
  Congre
ss,	
  	
  

Designing	
  a	
  Dig
ital	
  Future	
  



* Transactional	
  Privacy,	
  a	
  primer	
  
− Need	
  for	
  alternative	
  economic	
  approach	
  to	
  privacy	
  
	
  
* Highlights:	
  
− Can	
  we	
  practically	
  build	
  TP?	
  
− The	
  real	
  reasons	
  why	
  it	
  may	
  not	
  work	
  
− Can	
  it	
  be	
  incrementally	
  deployed?	
  

* Concluding	
  remarks	
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This	
  talk	
  



The	
  Privacy	
  Tussle	
  

Online	
  Service	
  Providers,	
  
Data	
  Brokers,	
  Aggregators	
  

More	
  monetization	
  of	
  
personal	
  information	
  

Users,	
  Associations,	
  	
  
Journalists,	
  governments	
  

Stop	
  the	
  erosion	
  of	
  privacy?	
  
Regulate?	
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* No	
  limitation	
  on	
  3rd	
  party	
  tracking	
  
− Permission	
  ultimatum	
  (Android,	
  FB,	
  Apple)	
  
− Aggregation	
  (Re-­‐targering,	
  FB	
  connect,	
  quasi-­‐logout)	
  
− Reselling	
  (Rapleaf,	
  bluekai,	
  Google	
  DDP)	
  

* Privacy	
  is	
  difficult	
  to	
  perceive	
  and	
  to	
  protect	
  
− Behavioral:	
  Immediate	
  gratification,	
  illusion	
  of	
  control	
  
− Technical:	
  inference	
  (e.g.	
  differential	
  privacy)	
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What	
  complicates	
  the	
  Tussle	
  



* Privacy	
  preserving	
  techniques	
  
− Anonymization:	
  Tor,	
  Obfuscation:	
  TrackMeNot	
  
− Self-­‐destructing	
  data:	
  Vanish	
  
− Monitoring:	
  Dynamic	
  Taint	
  Analysis	
  
− Privacy-­‐Preserving	
  services:	
  AdNostic,	
  Privad,	
  Repriv	
  

	
  
* Not	
  adopted,	
  for	
  2	
  reasons:	
  	
  
1.  little	
  user	
  incentive,	
  “privacy	
  is	
  not	
  enough”	
  
2.  Ignores	
  data’s	
  value,	
  “really	
  socially	
  optimal?”	
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Technical	
  solutions	
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Fix	
  the	
  economy	
  first!	
  

By:	
  You	
  



* Principle	
  1:	
  A	
  relaxed	
  definition	
  of	
  privacy	
  
−  Is	
  privacy	
  the	
  state	
  of	
  being	
  free	
  from	
  observation?	
  	
  	
  
…	
  or	
  know	
  and	
  control	
  who	
  uses	
  what	
  about	
  you?	
  

− We	
  do	
  not	
  hide	
  data,	
  rather	
  we	
  enforce	
  payment	
  for	
  
their	
  commercial	
  use.	
  

* Principle	
  2:	
  A	
  separation	
  of	
  powers	
  
− Who	
  should	
  decide	
  what?	
  
− User	
  “what	
  is	
  for	
  sale?”	
  
market	
  “what	
  is	
  it	
  worth?”	
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Transactional	
  Privacy	
  in	
  a	
  nutshell	
  



Privacy	
  as	
  usual	
  vs.	
  Transactional	
  Pr.	
  

Goal:	
  free	
  from	
  observation	
  
*  Adversary:	
  
honest	
  but	
  curious	
  

*  Hard	
  problem,	
  requires	
  
−  data	
  through	
  queries	
  
−  Estimate	
  privacy	
  violation	
  

as	
  negative	
  externalities	
  

*  Many	
  source	
  of	
  leakage	
  
−  reselling	
  
−  from	
  price	
  and	
  bids	
  

Goal:	
  free	
  from	
  exploitation	
  
*  Adversary:	
  
malicious	
  but	
  rational	
  

*  Potentially	
  easier	
  
−  raw	
  data	
  

works	
  with	
  any	
  algorithm	
  
−  simpler	
  

*  Inference	
  is	
  mostly	
  useless	
  
−  Brings	
  no	
  additional	
  value	
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1.  Provide	
  the	
  right	
  incentive	
  to	
  users	
  	
  
−  A	
  perception	
  of	
  their	
  data	
  value	
  
−  Information	
  leakage	
  =	
  market	
  arbitrage	
  

2.  Improve	
  the	
  new	
  data	
  economy	
  
−  More	
  transparent:	
  give	
  user	
  a	
  control	
  
−  More	
  democratic:	
  let	
  the	
  best	
  tech	
  (not	
  data)	
  win!	
  
−  More	
  efficient?	
  Avoid	
  public	
  campaigns,	
  more	
  data	
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Economic	
  solution	
  to	
  privacy	
  

Google’s	
  
“Good	
  to

	
  know”	
  ~	
  10m	
  

Google	
  Lo
bby	
  +240

%	
  in	
  2012	
  	
  

	
  

The	
  price	
  of	
  free	
  	
  
https://github.com/ManConley/Price-­‐of-­‐Free/	
  
	
  
	
  

Nice	
  but	
  is	
  it	
  practic
al?	
  



* Transactional	
  Privacy,	
  a	
  primer	
  
− Need	
  for	
  alternative	
  economic	
  approach	
  to	
  privacy	
  
	
  
* Highlights:	
  
− Can	
  we	
  practically	
  build	
  TP?	
  
− The	
  real	
  reasons	
  why	
  it	
  may	
  not	
  work	
  
− Can	
  it	
  be	
  incrementally	
  deployed?	
  

* Concluding	
  remarks	
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This	
  talk	
  



TP	
  for	
  web-­‐browsing	
  
1.  Data	
  protection	
  

Mix	
  network	
  anonymize	
  
{	
  IP	
  address	
  +	
  cookies	
  }	
  

2.  Data	
  to	
  sale+	
  Pricing	
  
unlim.	
  supply	
  auction	
  

3.  Revelation	
  

Only	
  those	
  who	
  paid	
  can	
  
access	
  the	
  users	
  identity	
  
during	
  an	
  impression	
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* We	
  don’t	
  protect	
  to	
  protect,	
  we	
  protect	
  to	
  sell	
  later	
  
− Enough	
  to	
  make	
  misbehavior	
  economically	
  inefficient	
  

* What	
  to	
  sell?	
  The	
  really	
  simple	
  user	
  Interface	
  
− How	
  much	
  do	
  you	
  value	
  	
  
this	
  bit?	
  TOO	
  HARD	
  

− Would	
  you	
  put	
  this	
  bit	
  on	
  	
  
the	
  market?	
  A	
  BIT	
  EASIER	
  

− Tune	
  a	
  simple	
  scroll	
  bar	
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1.	
  How	
  to	
  protect	
  data?	
  

Figure 2: Fraction of time spent by user per
site (x-axis) vs. Normalized popularity of sites
(y-axis)

a high variance in terms of visits; a long-tail, which has
been observed before in related data [5]. The power law
fits with exponent 1.5 for mobile browsing passed the
Kolmogrov-Smirnov test [3].

For every user, we calculate the fraction of time (in
terms of visits) spent on each of the visited sites. For
each site she visits, we plot her fraction of time spent
on that site versus the global popularity of that site
(normalized by the most popular site, facebook.com)
in Fig. 2. We posit that high values on the x-axis and
low values on the y-axis relate to sensitive information.
For example, we found that URLs occupying this can
be either highly regional, sarbast.net or related to a
health condition breastcancer.com, pertaining to sen-
sitive information [9].

Sample application: Online Coupons
Companies use coupons as a form of price discrim-

ination, that are made more effective with access to
PII [14]. Online coupon companies like Groupon have
become highly popular and aggregators have shown in-
terests to enter this market9. In order to study a user’s
potential revenue as given by the auction, we use the
browsing data and proceed as follows:

(i) For each user, we categorize the URLs of the sites
they visited using Alexa.com, which provides the top
500 sites for each category. We filter out visits to ad
(i.e. Doubleclick, Admob, etc.), analytics, and adult
sites to lower any bias.

(ii) We assume that the bidders involved are online
coupon vendors and each vendor bids for one category.
We found 32 Alexa categories that overlapped with on-
line coupon categories.

(iii) We monitored yipit.com, an online coupon ag-
gregator, over three days (July 17-20, 2011) to obtain
mean value per deal in each category. We then assume
that each user has a likelihood of making a purchase

9Facebook jumps into crowded coupon market,
http://goo.gl/oLrJy

in a category proportional to the fraction of time spent
browsing in that category. Thus, the bid values are the
mean deal value for a category multiplied by this frac-
tion. The categories Travel and Office Products had
the highest mean values of $844.14 and $207.9.

(iv) For multiple users, we vary the amount of infor-
mation they reveal. The disclosure strategy is described
in Sec. 2, where we release sites in order of popularity
from highest to lowest. We release information in blocks
of 1% of the volume each time.

(v) For every release, we calculate a set of bids. The
majority of high bids came from four yipit categories:
computers, home, entertainment, kids and teens.

We pick 4 typical users who have high to middle-level
activity and plot (Fig. 3(a)) the optimal revenue they
stand to gain as a function of every information release.
We obtain the optimal revenue assuming bidders are
honest about their valuations. For all of these users, we
observe that there is initially a steep increase in rev-
enue with a little disclosure of information, followed by
diminishing return as more PII is released. This shows
that sensitive information (as given by popularity) is
not needed for maximizing revenues. To study enforce-
ment of truth telling in the auction, we plot (Fig. 3(b))
the result of running the auctions for different values of
ε. Note that smaller values of ε enforce truth-telling.
We find that the value of ε has little or no effect on the
results (qualitatively).

4. PERSONAL INFORMATIONMARKET
For TP to be effective, we develop a system that cur-

tails the leakage of information and prevents identifi-
cation while browsing. This system should allow users
access to all content without being tracked by aggrega-
tors while imposing a minimum overhead; we note that
it would be impossible to prevent all types of informa-
tion gathering methods. By raising the bar high enough
for information aggregators, we believe they will find it
cheaper and more convenient to come to the market.

System Description: The full architecture is shown
in Fig. 4, with the main additions being a component
responsible for transactional privacy and anonymizing
proxies in the middle, operated by the trusted third
party. At the browser end, a lightweight plugin pro-
vides the following functionality: (i) opts-out users of
ad-networks and activates Do-not-track10, showing in-
tent, (ii) provides the user with a mechanism to help
them decide which URLs they are willing to put on the
market, (iii) prevents leakage (3rd party cookies, super
cookies, flash cookies, 1-pixel bugs, etc.) [9], (iv) helps
manage multiple users accessing the same device – pro-
vides profiles with personalized settings for each user.

For an opt-in user Alice, the operations that take
place for Web browsing are as follows:

(i) Alice with IP address IPreal browses the web.

10http://donottrack.us

4



1.  As	
  a	
  function	
  of	
  User’s	
  loss?	
  
− Differential	
  privacy	
  +	
  auctions	
  [Ghosh-­‐Roth11]	
  
− hard	
  to	
  put	
  into	
  practice:	
  bid	
  leaks,	
  users’	
  assessment	
  

2.  As	
  a	
  function	
  of	
  Provider’s	
  benefit?	
  
− Can	
  be	
  thought	
  of	
  as	
  a	
  coalition	
  game	
  [Kleinberg01]	
  
− Requires	
  truthful	
  revelation	
  of	
  value	
  

* Run	
  an	
  auction	
  (with	
  unlimited	
  supply)	
  

19	
  

2.	
  How	
  to	
  Price	
  Private	
  Data?	
  



*  For	
  sale:	
  identifying	
  your	
  browsing	
  in	
  [t;t+1]	
  
* Unlimited	
  supply	
  auctions	
  
− Sell	
  your	
  personal	
  data	
  to	
  multiple	
  purchasers	
  
− Every	
  purchaser	
  indicates	
  a	
  maximum	
  price	
  
− User’s	
  revenue	
  

− Run	
  exponential	
  mechanism:	
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The	
  personal	
  data	
  auction	
  
in contrast to previous solutions that constrain the ag-
gregators to access data through limited variables that
are deemed ‘safe’ to release [4]. Many aggregators run
specialized algorithms on their data sets. Forcing ag-
gregators to disclose these algorithms or constraining
the data they are able to use is a losing proposition.

Here is why we believe that aggregators can compute
the value of access to a user accurately: First, aggrega-
tors have experience extracting value from PII. Second,
they are able to assess revenues on a short-term ba-
sis through the sale of goods or ad-space, compared to
the long-term risk a user must calculate in dealing with
privacy. Finally, aggregators typically deal with many
customers, and can take a little more risk in overesti-
mating or underestimating the value of access, as op-
posed to users who are more risk averse.

Model
Formally, we denote the set of users by I, and each

user by the index i. The scheme we describe next is
general enough to apply to different types of PII. We
introduce the set of sites J whose elements, denoted
by the index j can be either a URL (for web-browsing),
or a geographical location (e.g., a longitude and latitude
using GPS, or a cell in a mobile network). We assume
that users disclose a simple count of their activity on
different sites, denoted by µi(j), which is a vector that
indicates how many visits the user has made to either
a URL or a location. It is possible to apply the same
model to a more complex vector that would indicate
time, duration, or order of visits. We assume that each
user indicates a subset Si ⊆ J that contains all the sites
she is ready to be tracked on. This indicates that an
aggregator would be able to uniquely identify this user
whenever she visits these sites, and will also be given
µi(j) for j ∈ Si. This enables the aggregator to build-
up a profile over time, to further help with targeting.

Let us denote the set of aggregators by K, each in-
dexed by k. Intuitively, aggregator k should be willing
to pay to access this information as long as the price to
acquire it is smaller than the additional revenue rk it
can make. Note that the good being sold on the market
is access to PII. This good can be sold to multiple ag-
gregators with no marginal cost of reproduction, hence
the market can be thought of as having an unlimited
supply. Extensions for an aggregator to buy exclusive
access can be included although beyond the scope of
this paper. However, there can be strong incentive for
aggregators to lie about their valuation.

In order to effectively trade such unlimited supply
goods, we rely on the auction mechanism called the
exponential mechanism [13] which has the following
properties: (i) it has been shown to be a truth telling
mechanism; it is in the best interest of the bidders to
be honest about their valuation and (ii) the scheme has
been shown to be close to optimal in terms of revenue
for the seller (end-user in our case). We choose this ob-

jective for this paper, while noting that other objective
functions (e.g., maximizing revenue for all players in the
value chain) can be chosen.

In the auction, we assume that each aggregator k in
K bids a maximum price pi,k that it is ready to pay to
access user i. Assuming that the fixed price set is p and
all willing bidders pay p, the total revenue is given by:

R ((pi,k)k∈K, p) =
∑

k∈K

p × I{p≤pi,k} .

When p > maxk∈K pi,k, the revenue will be zero, as
no one buys the information that is priced too high.

We wish to choose p to maximize this sum. Following
[13] we first assign an initial value to p according to
a measure ν on R and then we re-weigh this measure
to choose the actual price used. To re-weigh, we use
an exponential function that puts more weight on high
value of R, according to a parameter ε > 0. Hence the
pdf of the chosen price is given by

exp (εR ((pi,k)k∈K, p)) ν(p)∫ ∞
0 exp (εR ((pi,k)k∈K, s)) ν(s)ds

Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least

OPT −3 ln(e+OPT ε2m)
ε

, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed

3

in contrast to previous solutions that constrain the ag-
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specialized algorithms on their data sets. Forcing ag-
gregators to disclose these algorithms or constraining
the data they are able to use is a losing proposition.

Here is why we believe that aggregators can compute
the value of access to a user accurately: First, aggrega-
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they are able to assess revenues on a short-term ba-
sis through the sale of goods or ad-space, compared to
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general enough to apply to different types of PII. We
introduce the set of sites J whose elements, denoted
by the index j can be either a URL (for web-browsing),
or a geographical location (e.g., a longitude and latitude
using GPS, or a cell in a mobile network). We assume
that users disclose a simple count of their activity on
different sites, denoted by µi(j), which is a vector that
indicates how many visits the user has made to either
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she is ready to be tracked on. This indicates that an
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the market can be thought of as having an unlimited
supply. Extensions for an aggregator to buy exclusive
access can be included although beyond the scope of
this paper. However, there can be strong incentive for
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for the seller (end-user in our case). We choose this ob-
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functions (e.g., maximizing revenue for all players in the
value chain) can be chosen.

In the auction, we assume that each aggregator k in
K bids a maximum price pi,k that it is ready to pay to
access user i. Assuming that the fixed price set is p and
all willing bidders pay p, the total revenue is given by:

R ((pi,k)k∈K, p) =
∑

k∈K

p × I{p≤pi,k} .

When p > maxk∈K pi,k, the revenue will be zero, as
no one buys the information that is priced too high.

We wish to choose p to maximize this sum. Following
[13] we first assign an initial value to p according to
a measure ν on R and then we re-weigh this measure
to choose the actual price used. To re-weigh, we use
an exponential function that puts more weight on high
value of R, according to a parameter ε > 0. Hence the
pdf of the chosen price is given by

exp (εR ((pi,k)k∈K, p)) ν(p)∫ ∞
0 exp (εR ((pi,k)k∈K, s)) ν(s)ds

Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least

OPT −3 ln(e+OPT ε2m)
ε

, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed
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an exponential function that puts more weight on high
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Note that this density is always defined as long as the
integral is finite, and note that the function R is zero
for p sufficiently large. A natural and simple choice is
then to choose the initial distribution of p according to
the Lebesgue measure on R, such that ν(p) = 1.

By using ε, we have added noise around the value
maximizing the revenue, given the set of bids. Although
it seems counter-intuitive to use a suboptimal price, it
is shown [13] that this (1) prevents any bidder from
winning more than a factor exp(ε) when cheating and
(2) still reaches a revenue that is within a good bound
of the optimal value, denoted OPT , if the number of
aggregators is large. The expected revenue is at least
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, where m is the number of buyers
in the optimal case. Thus, although the randomization
causes revenue from a given set of bids to be lower,
truthful bidding means the set of bids will be higher,
ending up with better revenue than if we allowed bid-
ders to cheat.

3. CASE STUDY
We next focus our attention on studying how the rev-

enue of a user changes with varying amounts of infor-
mation release via TP. For this, we rely on real data
consisting of an entire day of browsing behavior on mo-
bile phones of several hundred thousand users from a
large European capital, collected during the last week
of Nov. 2010, by a large provider. While mobile brows-
ing is inherently different from fixed browsing behavior,
we believe the size and the scope of the dataset forms
a representative sample of browsing behavior. A sec-
ond dataset obtained from FourSquare gave us similar
results, but we omit them for space reasons. We ex-
tracted the number of site visits (URLs) and observed
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* Data	
  obtained	
  through	
  de-­‐anonymizer	
  
− The	
  purchasers	
  who	
  won	
  the	
  auction	
  are	
  given	
  the	
  	
  
associating	
  function	
  IP-­‐fake/IP-­‐real	
  for	
  this	
  user	
  

− Raw	
  information:	
  could	
  be	
  used	
  for	
  any	
  algorithms	
  
− Real	
  time:	
  can	
  be	
  used	
  for	
  immediate	
  action	
  

* Re-­‐run	
  the	
  bidding	
  process	
  periodically	
  
− Purchasers	
  can	
  infer	
  users’	
  profile	
  from	
  history	
  
− But	
  they	
  can’t	
  use	
  it!	
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Case	
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−  Mobile	
  Web	
  browsing	
  

large	
  city,	
  ~200k	
  users	
  
−  Online	
  Coupon	
  Dealers	
  

crawl	
  yipit.com	
  
−  Information	
  released	
  by	
  

decreasing	
  popularity	
  

Revenue	
  vs.	
  disclosure:	
  	
  
A	
  sweet	
  spot!	
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Confirms	
  previous	
  results	
  on	
  use	
  of	
  personal	
  information	
  to	
  improve	
  
click-­‐entropy	
  (See	
  [Krause-­‐Horvitz	
  2008]).	
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  Privacy,	
  a	
  primer	
  
− Need	
  for	
  alternative	
  economic	
  approach	
  to	
  privacy	
  
	
  
* Highlights:	
  
− Can	
  we	
  practically	
  build	
  TP?	
  
− The	
  real	
  reasons	
  why	
  it	
  may	
  not	
  work	
  
− Can	
  it	
  be	
  incrementally	
  deployed?	
  

* Concluding	
  remarks	
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“I	
  can	
  resell	
  your	
  information	
  to	
  1000	
  people”	
  
“wait,	
  I	
  can	
  even	
  sell	
  information	
  about	
  my	
  friends!”	
  
− BUT	
  you	
  can’t	
  sell	
  access	
  to	
  info	
  for	
  commercial	
  use!	
  

“To	
  bid,	
  companies	
  need	
  information	
  anyway”	
  
− True,	
  but	
  for	
  the	
  same	
  reason	
  they	
  can’t	
  monetize	
  it	
  

“You	
  give	
  away	
  value	
  of	
  statistical	
  information”	
  
−  Indeed,	
  it	
  becomes	
  a	
  public	
  good.	
  It’s	
  a	
  feature!	
  

“Price	
  discrimination	
  becomes	
  unprofitable”	
  
−  Is	
  that	
  certain?	
  Is	
  that	
  a	
  bad	
  thing?	
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“This	
  will	
  not	
  work	
  because	
  …	
  



“Tor	
  is	
  too	
  slow	
  anyway,	
  and	
  you	
  can	
  attack	
  it”	
  
− Something	
  much	
  lighter,	
  since	
  we	
  only	
  need	
  to	
  raise	
  
the	
  bar.	
  Companies	
  care	
  about	
  reputation	
  

“wouldn’t	
  disclosing	
  bulk	
  of	
  data	
  scare	
  users?	
  
	
  today’s	
  ecosystem	
  relies	
  on	
  their	
  ignorance”	
  

− Aim	
  at	
  transparency;	
  eventually	
  users	
  should	
  know.	
  
“wouldn’t	
  it	
  encourage	
  users	
  to	
  over-­‐expose.”	
  
− Yes,	
  which	
  is	
  why	
  not	
  all	
  information	
  can	
  be	
  traded	
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“Still	
  this	
  will	
  not	
  work	
  as	
  …	
  



“What	
  if	
  users	
  forge	
  bogus	
  data?”	
  
“And	
  get	
  compensated	
  for	
  it,	
  at	
  the	
  limit	
  it	
  means	
  these	
  
signals	
  are	
  useless”	
  
−  still	
  open	
  problem:	
  some	
  data	
  are	
  verifiable	
  

“What	
  if	
  there	
  is	
  there	
  is	
  not	
  enough	
  per	
  user?”	
  
“and	
  they	
  won’t	
  bother	
  for	
  2c	
  a	
  month”	
  
−  still	
  open	
  problem:	
  (1)	
  we	
  still	
  have	
  to	
  make	
  the	
  math	
  
as	
  the	
  pie	
  may	
  grows,	
  (2)	
  we	
  could	
  make	
  it	
  more	
  
attractive:	
  lottery,	
  pay	
  with	
  services	
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* Current	
  choice:	
  

28	
  

“Why	
  Johnny	
  can’t	
  opt-­‐out”	
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* But	
  this	
  creates	
  initially	
  some	
  revenue	
  loss	
  
−  is	
  there	
  a	
  deployment	
  that	
  is	
  incentive	
  compatible?	
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* Using	
  multiple	
  traces	
  (Residential,	
  Mobile,	
  Campus)	
  
− And	
  a	
  simple	
  model	
  of	
  Cost-­‐Per-­‐Mille	
  

− RON	
  is	
  base	
  price,	
  TQM	
  quality	
  of	
  site	
  
*  I	
  is	
  the	
  “Intent”	
  of	
  user	
  u	
  as	
  seen	
  by	
  aggregator	
  a	
  
	
  

	
  
− Estimated	
  using	
  categories	
  and	
  browsing	
  +	
  adwords	
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A	
  closer	
  view	
  at	
  today’s	
  ads	
  

a single page view can constitute multiple impressions
sold to advertisers by multiple aggregators.

2.3 Revenue for publishers and aggregators.
Aggregators and publishers share advertising revenue

generated by displaying ads on Web sites. We assume
the aggregator retains a constant fraction of the adver-
tising revenue (↵) and passes the remaining amount on
to the publisher. Google AdSense, for instance, keeps
↵ ⇠ 0.32 [29]. (We use this value in the paper.)

We consider ad revenue on a “cost-per-mille” (CPM)
basis as this is the primary method of purchasing tar-
geted display ad and represents the price for 1,000 im-
pressions (views) of an ad [21]. The amount an adver-
tiser will pay for impressions depends on the user u, ad
network a and publisher p.

CPM(u, p, a) = RONa ⇥ TQMp ⇥ Ia(u) (1)

Run-of-network (RONa). RONa is the base price
for an impression in ad network a. It represents the
price for an ad that may be shown on any publisher
that a is a�liated with. A RON ad is a generic ad that
is shown to users about whom little is known or who
are anonymous [9].

Tra�c quality multiplier (TQMp). TQMp is a
multiplier of the impression price that captures the qual-
ity of the impression based on factors such as the type
of publisher or ad location.

User Intent Ia(u). The value of an impression in-
creases as a function of the estimated purchasing intent
of the user. Currently, aggregators segment users based
on their interests [8], as inferred through online track-
ing. Certain segments are determined to have higher
purchasing intent (e.g., cell phone shoppers) and these
users’ impressions are worth more.

We use implicit intent IIa(u) to represent the intent
value an aggregator can infer about a user. It natu-
rally depends on the presence of an aggregator on the
sites the user visits. We distinguish this from explicit
intent EI(u) which is computed with knowledge of all

sites the user visits. Consider the example: user Bob
visits (espn.com, swimming.com, pets.com). Aggre-
gator A is present on the first two publishers, while
aggregator B is present on the third one. Implicit in-
tent for aggregator A about Bob would be limited to
Bob being interested in sports, while for aggregator B,
it is that Bob is interested in pets. The explicit intent
EI(u) is that Bob is interested in sports and pets.

2.4 Overall revenue.
The total revenue 2 of the online advertising ecosys-

2Note that this is the estimated revenue; we use ‘revenue’
to refer to the estimate

tem is the following:

R =
X

u2U

X

p2P

" 
X

a2A

µu(p)
1000

CPM(u, p, a)

!#
(2)

In the following sections, we empirically and analyti-
cally consider the impact of privacy protection on rev-
enue. In the next section, we describe how we extract
values for di↵erent parameters for our model.

3. DATA ANALYSIS METHODOLOGY
We use traces of HTTP tra�c in multiple networks to

study of advertising and incentives for deploying privacy
protection. While having access to an aggregator or a
publisher’s clickstream would aid our study, it would
provide only a single point-of-view. In contrast, HTTP
traces give us near complete visibility into the set of
publishers and aggregators that the user population in-
teracts with when they are present in the network. We
also describe how we assign values to the parameters
described in Sec. 2 from the data.

3.1 Data sets.
Residential HTTP trace (HTTP) Our first data
set is an anonymized HTTP trace from a residential
neighborhood in a large Western European city. The
users are DSL subscribers (identified by subscriber ID)
and the trace was collected at a DSLAM (serving users
in high thousands) over a day in April, 2011. There
were close to 40 million HTTP requests over the day.
Mobile HTTP trace (mHTTP) Our second data
set is an anonymized HTTP trace of the entire subscriber-
base of a mobile network over a Western European coun-
try over a day in late Aug. 2011. The number of users
(identified by phone numbers) in the trace are in the
millions, and account for more than 1.5 billion HTTP
transactions over the day.
University HTTP trace (Univ) The last dataset is
one month of HTTP traces from a North American uni-
versity with thousands of users. To protect user privacy,
users within the data set are identified using a unique ID
(based on their IP address) that is only valid for one day
which precludes longitudinal analysis of user behavior.
We run our experiments over the entire month, but for
simplicity present results from a single day (9/29/2010).
Results are similar over the month-long period.

3.2 Data analysis overview.
For each user in the HTTP traces (represented by

anonymized identifiers), we first group their HTTP trans-
actions into sessions. Second, we identify publishers and
aggregators within each session. This results in a set of
publishers and aggregators for each user. We use the
set of publishers to compute user intent (IIa(u) and
EI(u) from Sec. 2). Given the intent values, and values

3

2 4 6 8 10
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
Inferred Intent (II(u,a)

PD
F

●

●

●

●
● ● ● ● ●

● HTTP
mHTTP
Univ

Figure 5: Distribution of implicit intent, IIa(u).

potential values for Ia(u) in our model:

Ia(u) =

8
<

:

IIa(u) u and p do nothing
EI(u) u sells and a buys data
1 otherwise

(3)

Both implicit intent (IIa(u)) and explicit intent (EI(u))
are as described in Sec. 3.3, with the additional under-
standing that the user can now sell EI(u) in the infor-
mation market. Recall that implicit intent (IIa(u)) is
what aggregators can infer, while explicit intent (EI(u))
can consist of high quality information that the user di-
rectly provides. And when the user or publisher block
tracking there is no increase in CPM as a result of in-
tent, hence it is set to 1.

5.3 Quantifying the cost of blocking.
We use our datasets and the modified model to un-

derstand the change in revenue if users block tracking.
Fig. 5 shows how much value is currently derived from
implicit intent which stands to be lost if users block.
The average value of IIa(u) is 4.2 in the HTTP, 3.8 in
mHTTP and 3.1 in the Univ traces, respectively. In-
deed, when we compute revenue with all users block-
ing (i.e., Ia(u) = 1) revenue decreases by a factor of
4.2 in the HTTP, 3.8 in mHTTP, and 3.2 in the Univ
traces, respectively. A large population of users block-
ing – in the worst case, if the Do Not Track (DNT)
header [2] became default – would represent a signif-
icant threat to advertising revenue. If proposals like
DNT are honored by aggregators this may lead to low-
ered quality of service as the publisher will lose out
on additional revenues. Blocking also poses the poten-
tial to decrease functionality of Web sites for users(e.g.,
blocking Javascript via NoScript [30]). Hence, for these
reasons, it can be argued that most users will not take
the extreme step of blocking entirely. However, we find
that even if 5% of the top users (Fig. 2) block, the rev-
enue drop is between 35%-60%. With regards to obfus-
cation, if we assume that incorrect targeting is worse
than no targeting at all, then the drop in revenues due
to blocking will form a lower bound on revenue loss due
to obfuscation.

6. INFORMATION MARKETPLACES
We have shown that aggregators can accurately esti-

mate user intent and that their revenue naturally drops
as users unilaterally block tracking. The question then
arises – can privacy solutions be economically viable
vis-a-vis online advertising?

To answer this question, we consider an information
marketplaces that is based around users and aggrega-
tors cooperating. For cooperation to occur, the users
and aggregators need to fairly share advertising rev-
enue so that each party has incentive to participate in
the market. We address this problem by modeling the
information market as a cooperative game on a per-

impression basis. We use Shapley value [35] to under-
stand how revenue should be shared between players.
We consider dynamics beyond a single impression using
empirical data in Sec. 7.

6.1 Basic structure of the game.
We model each ad impression as a game, where the

revenue generated by the impression depends on the
actions of the players: whether or not to join the infor-
mation market.
Players. We consider users and aggregators. While
publishers play a role in online advertising, they do not
purchase or provide data in our market model. We dis-
cuss how publishers may create incentives for users and
aggregators to join the market in Sec. 6.4. In one form
of markets we consider below, a trusted third party or
a mediator is also considered a player.
Revenue sharing using Shapley value. Since the
outcome (advertising revenue) depends on the combined
e↵orts of players in a coalition, a natural question is how
to fairly divide the proceeds of the game among players.
Compensating players according to their contribution to
the game creates incentives for them to participate in
an information market. The Shapley value [35] allows
to do that using a minimum set of axioms (summarized
in Appendix C). Shapley value also has the desirable
stability property – that it lies at the core for general
classes of games (e.g., convex cooperative games). This
means that given Shapley value, all players will have
incentive to enter a stable cooperation. As we calcu-
late the Shapley value on a per impression basis that
involves the user and aggregator, we do not run into
computational overheads.

We consider two cooperative games representing po-
tential embodiments of an information marketplace:
1. Direct marketplace. Aggregators purchase data
directly from users. This may be achieved using a tech-
nology such as RePriv [14]; where the aggregator com-
pensates the user in exchange for running a mining plug-
in in the user’s browser.
2. Mediated marketplace. The sale of user data to

7
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* Deployment	
  under	
  two	
  scenarios:	
  	
  
− Let	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  “consented	
  tracking	
  ratio”	
  
−  r>1	
  because	
  explicit	
  intent	
  is	
  larger	
  than	
  implicit	
  
−  relates	
  intuitively	
  to	
  user’s	
  bargaining	
  power	
  
* Market	
  deployment	
  as	
  a	
  coalitional	
  game	
  
− Prop:	
  In	
  a	
  direct	
  market,	
  distributing	
  revenue	
  
according	
  to	
  Shapley	
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Table 3: Revenue in the direct marketplace.
S Ia(u) R(S)
; IIa(u) ↵RONaTQMpIIa(u)

{ u } 1 ↵RONaTQMp

{ a } IIa(u) ↵RONaTQMpIIa(u)
{ u, a } EI(u) ↵RONaTQMpEI(u)

aggregators is mediated by a third party. An example is
Transactional Privacy (TP) [34] where a (paid) neutral
third party mediates the sale of data. In this setting,
we also consider the mediator as a player in the game.

Solutions like Privad [18] do not explicitly discuss the
possibility of monetary compensation to the user, hence
they cannot be considered as forming a market as de-
fined above. However, if Privad were to include mone-
tary rewards to the user, the presence of an active third
party would make it a mediated marketplace.

Assumptions. We make the assumption that if a
user decides to use the marketplace her behavior does
not change. When the user joins a marketplace, the
market must block tracking of this user, otherwise there
is no incentive for aggregators to join the market and
purchase data (and can lead to arbitrage). We as-
sume the market implements mechanisms as suggested
by TP [34] or RePriv [14] to preclude tracking by ag-
gregators.

6.2 Direct marketplace.
In a direct market, there are two players, the user and

aggregator, that may form a coalition. Table 3 presents
the revenue obtained per-impression depending on the
participation of the user and aggregator in the coalition
(S) in the direct market game. The revenue in today’s
status quo (S = ;) has an intent coe�cient, Ia(u), of
IIa(u). The revenue remains the same as today if only
the aggregator joins the market as they can still track
users not participating in the market. Ia(u) drops to 1
when S = {u}, that is when only the user opts into the
market and hence blocks tracking. In contrast, when
all players join the marketplace (S = {u, a}) the intent
coe�cient increases to EI(u).

Direct market game is convex. Our revenue func-
tion is supermodular but non-monotone. This property
is unusual and implies that, as long as the Shapley value
in the grand coalition is positive for each player, it is
stable as no smaller subset of players can benefit from
deviating (proof omitted).

Applying Eq.8 (from Appendix C), we obtain that
the Shapley value for each player is given by:

'u = ↵RONaTQMp

2 (EI(u)� IIa(u)� (IIa(u)� 1))
'a = ↵RONaTQMp

2 (EI(u)� 1) .
(4)

The players hence receive whatever their original rev-
enue was in the original status quo, plus an average of

their incremental benefit to the system when they join
the coalition. This compensation accounts for players
increasing revenue by selling data or decreasing rev-
enue by blocking tracking. It has two important conse-
quences:
(1) On a per-impression basis, aggregators al-
ways have incentive to join the direct market.
Aggregators maintain the revenue they make today
(R({;}) = ↵RONaTQMpIIa(u)) plus their Shapley al-
located value. The latter is positive as the value of a
coalition never decreases when they join. However, in
contrast with today’s status quo, they have to share a
part of this additional revenue with the user.
(2) It is not always in the user’s interest to join
the market. The user’s share of advertising rev-
enue depends on the incremental quality of the data
they sell (captured through EI(u)� IIa(u)). However,
since their contribution to the game can be negative (via
blocking), the user’s Shapley value may be negative if
they do not increase value su�ciently (via EI(u)) to
o↵set the loss from blocking. In these cases, clearly a
user will not join the market in practice. However, we
reiterate that while from an economic viewpoint, a user
will not be incentivised to join the market she may join
due to privacy concerns.

We characterize the condition where the user’s rev-
enue is positive (i.e., EI(u) is large enough to o↵set
the loss from blocking) with the following “consented
tracking ratio”:

ru,a =
EI(u)� 1
IIa(u)� 1

.

We observe that ru,a is always positive (since EI(u) and
IIa(u) � 2) and that, in the direct market, the user has
incentive to join i↵ 'u > 0. It is easy to see that this
is true i↵ ru,a > 2. Thus, we have shown that a critical
condition for users to participate in a direct market is
ru,a > 2.

6.3 Mediated marketplace.
We next consider the case where aggregators purchase

user data via neutral (paid) mediator as is proposed
in [34]. This has the advantage that the users and ag-
gregators need only form an agreement with a single in-
termediary. However, the presence of a mediator means
that revenue must be shared with an additional party.

Table 4 presents per-impression revenue for a three
player game where the players are the user, aggregator
and mediator. Unlike the previous game, the user can-
not block tracking unless the mediator also participates
and coordinates the market. As a result, the intent co-
e�cient decreases to 1 only when S = {u, m}.
Mediated market is not convex. Again, this game
is non monotonic but the revenue function is not su-
permodular (a condition for convexity). Indeed, the
revenue obtained by adding u to S = ; is higher than
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Figure 2: Cumulative fraction of revenue at-
tributed to each aggregator and user.

Table 1: Publishers with the most revenue
(mHTTP).

Publisher Frac. Rev. Frac. Users Category
facebook.com 0.09 0.15 society
google.co.uk 0.04 0.11 computers
bbc.co.uk 0.03 0.07 arts
fbcdn.net 0.03 0.13 society
twitter.com 0.03 0.04 computers
yahoo.com 0.03 0.04 computers
google.com 0.02 0.18 computers
skysports.com 0.02 0.04 regional
premierleague.com 0.01 0.01 regional
ebay.com 0.01 0.02 shopping

of sessions per user with a correlation (r-value) of 0.64
for mHTTP. Unsurprisingly, users who browse more are
more valuable in the impression-based revenue model.
Most popular publishers do not necessarily gen-
erate most revenue. Table 1 shows the top pub-
lishers in the mHTTP dataset. We find that while
Google (google.com) is the most visited publisher with
18% of users visiting Google as a publisher5, Facebook
(facebook.com) actually generates the most revenue:
9%. We see Facebook’s CDN fbcdn.net also gener-
ating significant revenue since it also serves Facebook
Web pages. Revenue is correlated with the number of
aggregators present on each publisher, in the mHTTP
dataset, we find a correlation of 0.61 (r-value) between
number of aggregators and revenue per publisher.
Google is the top aggregator Table 2 show the
top aggregators in the mHTTP dataset. As in previous
work [25], we observe Google playing an active role as
an aggregator. Google is present on significantly more
publishers than the other aggregators, with presence on
80% of publishers in the mHTTP dataset. Fig. 2 shows
that advertising revenue is concentrated by a few aggre-
gators with the top 5-10% of aggregators getting 90%
of the ad revenue.
Facebook entering the aggregation game. Inter-
5Note that we use domain to identify publishers so
google.co.uk and google.com are treated separately. We
cannot sum the fraction of users they are present on because
there may be overlap in the set of users that visit them.

Table 2: Aggregators with the most revenue
(mHTTP ).

Frac. Frac. Frac.
Aggregator Rev. Users Pubs.
Google 0.18 0.17 0.80
Facebook 0.06 0.09 0.23
GlobalCrossing (AdMob) 0.04 0.11 0.19
AOL 0.03 0.04 0.07
Microsoft 0.03 0.04 0.17
Omniture 0.03 0.05 0.07
Yahoo! (AS42173) 0.03 0.04 0.07
Internap (RevSci) 0.02 0.03 0.01
Quantcast 0.02 0.03 0.09
Yahoo! (AS43428) 0.01 0.03 0.11
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Figure 3: CDF of inferred intent (IIa(u)) nor-
malized by explicit intent (EI(u)).

estingly, Facebook also ranks highly as an aggregator
reaching 9% of users with presence on 23% of first par-
ties in the mHTTP dataset. This is due to the ubiq-
uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
Aggregators know most about popular sites. We
previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
shows the fraction of publishers the top four aggrega-
tors are present on for varying numbers of top publish-
ers. Top aggregators are focusing on popular publishers
with the top aggregators present on more than 70% of
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ebay.com 0.01 0.02 shopping

of sessions per user with a correlation (r-value) of 0.64
for mHTTP. Unsurprisingly, users who browse more are
more valuable in the impression-based revenue model.
Most popular publishers do not necessarily gen-
erate most revenue. Table 1 shows the top pub-
lishers in the mHTTP dataset. We find that while
Google (google.com) is the most visited publisher with
18% of users visiting Google as a publisher5, Facebook
(facebook.com) actually generates the most revenue:
9%. We see Facebook’s CDN fbcdn.net also gener-
ating significant revenue since it also serves Facebook
Web pages. Revenue is correlated with the number of
aggregators present on each publisher, in the mHTTP
dataset, we find a correlation of 0.61 (r-value) between
number of aggregators and revenue per publisher.
Google is the top aggregator Table 2 show the
top aggregators in the mHTTP dataset. As in previous
work [25], we observe Google playing an active role as
an aggregator. Google is present on significantly more
publishers than the other aggregators, with presence on
80% of publishers in the mHTTP dataset. Fig. 2 shows
that advertising revenue is concentrated by a few aggre-
gators with the top 5-10% of aggregators getting 90%
of the ad revenue.
Facebook entering the aggregation game. Inter-
5Note that we use domain to identify publishers so
google.co.uk and google.com are treated separately. We
cannot sum the fraction of users they are present on because
there may be overlap in the set of users that visit them.
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estingly, Facebook also ranks highly as an aggregator
reaching 9% of users with presence on 23% of first par-
ties in the mHTTP dataset. This is due to the ubiq-
uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
Aggregators know most about popular sites. We
previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
shows the fraction of publishers the top four aggrega-
tors are present on for varying numbers of top publish-
ers. Top aggregators are focusing on popular publishers
with the top aggregators present on more than 70% of
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Google (google.com) is the most visited publisher with
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(facebook.com) actually generates the most revenue:
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work [25], we observe Google playing an active role as
an aggregator. Google is present on significantly more
publishers than the other aggregators, with presence on
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reaching 9% of users with presence on 23% of first par-
ties in the mHTTP dataset. This is due to the ubiq-
uitous Facebook “Like” button that appears on many
Web pages.

4.2 How much do aggregators know?
Most aggregators are able to estimate intent ac-
curately. Fig. 3 shows the ratio of explicit to implicit
intent for user-aggregator pairs. Recall, that for each
user, the aggregator infers intent based on the subset of
sites the user visits where the aggregator is present as
a third party. Most aggregators are able to accurately
infer user intent with more than half of aggregators in
all datasets inferring the correct value of EI(u). This
accuracy stems from many users visiting sites in a small
number of categories with half the users in all datasets
visiting sites in two or fewer categories in our datasets
(figure not shown).
Aggregators know most about popular sites. We
previously considered the presence of top aggregators
across all publishers in our datasets (Table 2). Main-
taining presence on many publishers requires aggrega-
tors to build and maintain business relationships. Fig. 4
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tors are present on for varying numbers of top publish-
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potential values for Ia(u) in our model:

Ia(u) =

8
<

:

IIa(u) u and p do nothing
EI(u) u sells and a buys data
1 otherwise

(3)

Both implicit intent (IIa(u)) and explicit intent (EI(u))
are as described in Sec. 3.3, with the additional under-
standing that the user can now sell EI(u) in the infor-
mation market. Recall that implicit intent (IIa(u)) is
what aggregators can infer, while explicit intent (EI(u))
can consist of high quality information that the user di-
rectly provides. And when the user or publisher block
tracking there is no increase in CPM as a result of in-
tent, hence it is set to 1.

5.3 Quantifying the cost of blocking.
We use our datasets and the modified model to un-

derstand the change in revenue if users block tracking.
Fig. 5 shows how much value is currently derived from
implicit intent which stands to be lost if users block.
The average value of IIa(u) is 4.2 in the HTTP, 3.8 in
mHTTP and 3.1 in the Univ traces, respectively. In-
deed, when we compute revenue with all users block-
ing (i.e., Ia(u) = 1) revenue decreases by a factor of
4.2 in the HTTP, 3.8 in mHTTP, and 3.2 in the Univ
traces, respectively. A large population of users block-
ing – in the worst case, if the Do Not Track (DNT)
header [2] became default – would represent a signif-
icant threat to advertising revenue. If proposals like
DNT are honored by aggregators this may lead to low-
ered quality of service as the publisher will lose out
on additional revenues. Blocking also poses the poten-
tial to decrease functionality of Web sites for users(e.g.,
blocking Javascript via NoScript [29]). Hence, for these
reasons, it can be argued that most users will not take
the extreme step of blocking entirely. However, we find
that even if 5% of the top users (Fig. 2) block, the rev-
enue drop is between 35%-60%. With regards to obfus-
cation, if we assume that incorrect targeting is worse
than no targeting at all, then the drop in revenues due
to blocking will form a lower bound on revenue loss due
to obfuscation.

6. INFORMATION MARKETPLACES
We have shown that aggregators can accurately esti-

mate user intent and that their revenue naturally drops
as users unilaterally block tracking. The question then
arises – can privacy solutions be economically viable
vis-a-vis online advertising?

To answer this question, we consider an information
marketplaces that is based around users and aggrega-
tors cooperating. For cooperation to occur, the users
and aggregators need to fairly share advertising rev-
enue so that each party has incentive to participate in
the market. We address this problem by modeling the
information market as a cooperative game on a per-

impression basis. We use Shapley value [34] to under-
stand how revenue should be shared between players.
We consider dynamics beyond a single impression using
empirical data in Sec. 7.

6.1 Basic structure of the game.
We model each ad impression as a game, where the

revenue generated by the impression depends on the
actions of the players: whether or not to join the infor-
mation market.
Players. We consider users and aggregators. While
publishers play a role in online advertising, they do not
purchase or provide data in our market model. We dis-
cuss how publishers may create incentives for users and
aggregators to join the market in Sec. 6.4. In one form
of markets we consider below, a trusted third party or
a mediator is also considered a player.
Revenue sharing using Shapley value. Since the
outcome (advertising revenue) depends on the combined
e↵orts of players in a coalition, a natural question is how
to fairly divide the proceeds of the game among players.
Compensating players according to their contribution to
the game creates incentives for them to participate in
an information market. The Shapley value [34] allows
to do that using a minimum set of axioms (summarized
in Appendix C). Shapley value also has the desirable
stability property – that it lies at the core for general
classes of games (e.g., convex cooperative games). This
means that given Shapley value, all players will have
incentive to enter a stable cooperation. As we calcu-
late the Shapley value on a per impression basis that
involves the user and aggregator, we do not run into
computational overheads.

We consider two cooperative games representing po-
tential embodiments of an information marketplace:
1. Direct marketplace. Aggregators purchase data
directly from users. This may be achieved using a tech-
nology such as RePriv [13]; where the aggregator com-
pensates the user in exchange for running a mining plug-
in in the user’s browser.
2. Mediated marketplace. The sale of user data to
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