Bang-bang and Singular Controls

Suzanne Lenhart

University of Tennessee, Knoxville

Department of Mathematics

Bang-Bang Control

A solution to a problem that is linear in the control frequently involves discontinuities in the optimal control

$$\max_{u} \int_{0}^{T} [f_1(t, x) + u f_2(t, x)] dt$$

$$x' = g_1(t, x) + u g_2(t, x)$$

$$x(0) = 1$$

$$a \le u(t) \le b$$

Contd.

$$\begin{split} H &= f_1(t,x) + u f_2(t,x) + \lambda \left(g_1(t,x) + u g_2(t,x) \right) \\ &= u \left(f_2(t,x) + \lambda g_2(t,x) \right) + f_1(t,x) + \lambda g_1(t,x) \\ &= u \phi(t,x,\lambda) + \text{rest} \;, \end{split}$$

where ϕ is switching function. Maximize H w.r.t. u at u^*

$$u^*(t) = \begin{cases} a & \text{if } \phi(t, x^*, \lambda) < 0 \\ ? & \text{if } \phi(t, x^*, \lambda) = 0 \\ b & \text{if } \phi(t, x^*, \lambda) > 0 \end{cases}$$

If $\phi(t, x^*, \lambda(t)) = 0$ is not sustained over an interval of time, then the control is bang-bang.

Bang-bang always at the extreme values of the control set.

If $\phi(t, x^*, \lambda(t)) = 0$ over an interval of time, the value of u^* is singular.

The choice of u^* must be obtained from other information than " max H w.r.t. u".

The times when the OC switches from a to b or vice-versa or switches to singular control are called <u>switch</u> <u>times</u>.

(Sometimes difficult to find).

Example 1

$$\max \int_0^T (1 - u)x \, dt \quad \text{max sales}$$

$$x' = ux \qquad x(0) = x_0 > 0$$

- x(t) stock can be reinvested to expand capacity or sold for revenue and x(t)>0
- u(t) fraction of stock to be reinvested

$$0 \le u(t) \le 1$$
$$H = (1 - u)x + \lambda ux$$

Hamiltonian

$$\begin{split} H &= u(x(\lambda-1)) + x \\ \frac{\partial H}{\partial u} &= x(\lambda-1) \\ \lambda' &= -\frac{\partial H}{\partial x} = -(u(\lambda-1)+1) = u-1-\lambda u, \quad \lambda(T) = 0 \\ \text{when} \quad \lambda(t)-1>0, \quad u^*=1 \quad \Rightarrow \lambda'=-\lambda \\ \text{when} \quad \lambda(t)-1<0, \quad u^*=0 \quad \Rightarrow \lambda'=-1 \end{split}$$

Can $\frac{\partial H}{\partial u} = 0$ on a subinterval? Then $\lambda = 1$ and $\lambda' = 0$ on that subinterval.

Contradicts adjoint ODE. No singular case here

Bang-bang

Either $\lambda>1$ giving u=1 and $\lambda'=-\lambda$ or $\lambda<1$ giving u=0 and $\lambda'=-1$. λ is decreasing and $\lambda(T)=0$. On $[\hat{t},T],\quad \lambda<1\quad \lambda=T-t$ $u^*=0,\quad x^*=x^*(\hat{t})$.

Hamiltonian

Switch time T-1

If
$$T-1 \le 0$$
, $T \le 1$
$$u^* \equiv 0$$

$$x^* = x_0$$

If T > 1

Example 2

$$\min_{-1 \leq u \leq 1} \int_0^1 (2 - 5t) u(t) \, dt$$

$$x' = 2x + 4te^{2t} u$$

$$x(0) = 0 \quad x(1) = e^2$$

$$H = (2 - 5t)u + \lambda \left(2x + 4te^{2t}u\right)$$

$$\lambda' = -\frac{\partial H}{\partial x} = -2\lambda$$

$$\lambda = \lambda_0 e^{-2t} \quad \text{no transversality condition}$$

$$H = \left(2 - 5t + 4\lambda te^{-2t}\right) u + 2\lambda x$$

$$H = \left(2 - 5t + 4\lambda_0 t\right) u + 2\lambda x$$

$$H = (2 + 4\lambda_0 t - 5t) u + 2\lambda x$$

 $(2+4\lambda_0 t-5t)$ is switching function and it will switch from + to - at most once. at $t=0, \quad 2+(4\lambda_0-5)(0)>0,$ Initially $\frac{\partial H}{\partial u}>0, \ u^*=-1$ on $[0,\hat{t})$

one case

If
$$u^* \equiv -1$$
 on $[0,1]$
$$x' \text{ DE } \& x(0) = 0$$

$$\Rightarrow x = -2t^2e^{2t}.$$

That solution does not satisfy $x(1) = e^2$.

There must be one switch.

On
$$(\hat{t}, 1], 2 + (4\lambda_0 - 5)t < 0, \quad u^* = 1$$

$$x'$$
 DE & $x(1) = e^2 \Rightarrow x = e^{2t}(2t^2 - 1)$.

 x^* must be continuous at \hat{t}

$$e^{2\hat{t}} (2\hat{t}^2 - 1) = -2\hat{t}^2 e^{2\hat{t}} \Rightarrow \hat{t} = \frac{1}{2}$$

Switching function = 0 at \hat{t}

$$(2 + (4\lambda_0 - 5)\hat{t} = 0 \Rightarrow \lambda_0 = \frac{1}{4}$$

Optimal solution

Basic resource Model

(Clark p. 95) "Fishery"

$$\max \int_{0}^{T} e^{-\delta t} (pqx - c) E dt$$
$$\frac{dx}{dt} = F(x) - qEx$$

E control (effort), p price and q "catchability" $0 \leq E(t) \leq E_{\max}$ max discounted profit revenue - cost

$$H = e^{-\delta t} (pqx - c)E + \lambda (F(x) - qEx)$$
$$= \left[e^{-\delta t} (pqx - c) - \lambda qx \right] E + \lambda F(x).$$

Singular control occurs when the coefficient of control E is zero over a time interval (switching function is zero).

when
$$e^{-\delta t}(pqx-c)-\lambda qx>0$$
 $E^*=E_{\max}$
$$e^{-\delta t}(pqx-c)-\lambda qx<0$$
 $E^*=0$
$$e^{-\delta t}(pqx-c)-\lambda qx=0$$
 singular case

Singular Case

Suppose
$$\frac{\partial H}{\partial u} = 0$$

$$e^{-\delta t}(pqx - c) - \lambda qx = 0$$

on a time interval. Solve for λ

$$\lambda = e^{-\delta t} \left(p - \frac{c}{qx} \right)$$

$$\frac{d\lambda}{dt} = e^{-\delta t} (-\delta) \left(p - \frac{c}{qx} \right) + e^{-\delta t} \frac{c}{qx^2} \frac{dx}{dt}$$

$$= e^{-\delta t} \left[-\delta \left(p - \frac{c}{qx} \right) + \frac{c}{qx^2} (F(x) - qEx) \right]$$

From necessary conditions

$$\frac{d\lambda}{dt} = -\frac{\partial H}{\partial x} = -\left[e^{-\delta t}pqE + \lambda(F'(x)qE)\right]$$
$$= -\left[e^{-\delta t}pqE + e^{-\delta t}\left(p - \frac{c}{qx}\right)(F'(x) - qE)\right]$$

after substituting in λ . Set 2 expressions for $\frac{d\lambda}{dt}$ equal (cancel $e^{-\delta t}$)

$$-\delta\left(p - \frac{c}{qx}\right) + \frac{c}{qx^2}(F(x) - qEx)$$
$$= -pqE + \left(p - \frac{c}{qx}\right)(qE - F'(x))$$

Term involving control E cancel

$$-\delta p + \frac{\delta c}{qx} + \frac{c}{qx^2} F(x) = F'(x) \left(\frac{c}{qx} - p\right)$$

$$F'(x) + \frac{cF(x)}{x(pqx - c)} = \delta$$

optimal state should satisfy this equation when in the singular control case. (find x^* and use state DE to find u^*).

Simple case

$$F(x) = x(1-x)$$

$$p = q = 1, c = 0 \quad \text{ignoring cost of fishing}$$

Singular case

$$F'(x) + \frac{cF(x)}{x(pqx - c)} = \delta$$

$$1 - 2x + 0 = \delta \Rightarrow x^* = (1 - \delta)/2$$

$$\Rightarrow (x^*)' = 0 \quad \text{during singular case}$$

$$x^*(1 - x^*) - E^*x^* = 0 \quad \Rightarrow 1 - x^* - E^* = 0$$

During singular case

$$1 - x^* - E^* = 0$$

$$x^* = \frac{1 - \delta}{2}$$

$$1 - \left(\frac{1 - \delta}{2}\right) - E^* = 0 \Rightarrow E^* = \frac{1 + \delta}{2}$$

If $\delta = 0$, singular case

$$x^* = 1/2$$
$$E^* = 1/2$$

Back to Bioreactor Model

$$x' = Gux - x^2$$
 state (bacteria)
 $x(0) = x_0$
 $\max \int_0^T (Kx(t) - u(t)) dt$
 $0 \le u(t) \le M$ control (nutrient input)
 $H = Kx - u + \lambda (Gux - x^2)$
 $\lambda' = -\frac{\partial H}{\partial x} = -(K + \lambda (Gu - 2x))$
 $\lambda(T) = 0$

$$H = u(G\lambda x - 1) + kx - \lambda x^2$$

If $G\lambda x^* - 1 = 0$ on a time interval, singular control u^* may satisfy $0 < u^*(t) < M$

$$(\lambda x^*)' = (\lambda x^* - K) x^* \quad \text{using } \lambda, x \text{ DE}$$

$$(\lambda x^*)(T) = 0$$

$$(\lambda x^*)(t) = K \left[1 - \exp\left(-\int_t^T x^*(s) \, ds\right) \right]$$
$$0 \le (\lambda x^*)(t) < K$$

 $(\lambda x^*)(t)$ is a strictly decreasing function. Thus

$$G\lambda x - 1 = 0$$

cannot be maintained on an interval. No singular case here.

Switch

One switch occurs when

$$(\lambda x^*)(t) = \frac{1}{G}$$

$$(\lambda x^*)(t) = K \left[1 - \exp\left(-\int_t^T x^*(s) \, ds\right) \right]$$

Can show if $\frac{1}{G} < K$ and T sufficiently large, there is a switch.

If KG>1 K or G large Where K is decay rate of contaminant and G is growth rate of bacteria and T sufficiently large, there is a switch

Otherwise $u^* \equiv 0$ i.e. no nutrient feeding.

Free Terminal Time

The final time T is part of the unknowns.

For example, steer a system from one position to another position in minimum time.

EXTRA condition is the Hamiltonian at the final T is 0.

Exercise

Solve with a partner now

$$\max_{u} \int_{0}^{2} (2x - 3u)dt$$

subject to x' = u + x and x(0) = 5 and $0 \le u(t) \le 2$.