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I Deterministic OC- ODEs

Find piecewise continuous control u(¢) and
associated state variable x(¢) to maximize

max/o f(t, x(t),u(t))dt

subject to
z'(t) = g(t, z(t), u(t))

z(0) = xg and z(T') free
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I Contd.

Optimal Control w*(¢) achieves the maximum
Put «*(¢) into state DE and obtain z*(t)
z*(t) corresponding optimal state

o o o @

u*(t), *(t) optimal pair



I Using Hamiltonian

Converted problem of finding control to maximize
objective functional subject to DE, I1C to using
Hamiltonian pointwise.

For maximization

0°H . f :

55 <0 atu ﬂH(u) as a function of u
For minimization

0*H

-5 >0 a w’ UH(u) as a function of u I



Two unknowns «* and z*
introduce adjoint \ (like a Lagrange multiplier)

Three unknowns «*, z* and \
H nonlinear w.r.t. u

Eliminate u* by setting H, =0
and solve for v* in terms of £* and A\

Two unknowns z* and )\
with 2 ODEs (2 point BVP)

+ 2 boundary conditions. I



I Pontryagin Maximum Principle

If w*(¢) and z*(t) are optimal for above problem, then there
exists adjoint variable A(¢) s.t.

H(t,z*(t), u(t), A(t)) < H(t, 2"(t),u"(t), A(¢)),
at each time, where Hamiltonian H is defined by
H(t,x(t),u(t), A1) = f(t,z(t),u(t)) + Ag(t, z(t), u(t)).

and

OH (t,z(t), u(t), (1))
ox

0 transversality condition I

=
3
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I Optimality Cond.-Control Bounds

a—HWi’[hagugb
ou

OH
u=al 5 <0

O0<u<bif _(9H:O
ou
OH
=bif — .
u==~ail 6u>0

Hamiltonian is maximized w.r.t. the controls



I Example with bounds

S /O 2(t) — 3u(t) — u(1)] dt

subjectto  z'(t) = z(t) + u(t), z(0) = 5,
0 <u(t) <2
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I Hamiltonian

H =2z — 3u — u® + 2\ + u.

A2) =0 =c =2 = A=2""-2

Consider u*, taking cases on the sign of 22
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I Optimality Conditions

OH
— = -3 -2 p)
By U+ A,
OH
O>%:>u20:>0>—3+)\:—7+262_t
OH
0<%:>U:2:>0<7—|—/\:—7—|—(262_t—2)
oOH 1 1
0=—— = u=—-(A—3 <-(A=3)<?2
5p = =W =3 = 0=5(A=3) <
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I Optimal control and state

w
w(t)=qer =2 w
w

nen 0 <t<2—1In(2),
nen 2 —1In(2) <t <2—1In(2),

nen 2 —1In(2) <t <2.

Insert values for «* into DE and solve 3 cases

ket — 2 when 0<t¢<2—In(2),
2*(t) = { koe! — e ' +2 when 2—-In(2) <t<2-
kget

when 2 —In(2 )<t<2|



I details

where k1, ko, and k3 are constants. Using

z(0) = 5, it follows k; = 7. Recall, the state must
be continuous. So, requiring z* to agree at

t =2—1In(3)and t = 2 — In(2), we find values for
ks and ks, so that
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Tel — 2 , 0<t<2-In(3),

(7T—%e?)et —3e*'+2 2—In(3) <t <2—1In(2)

(7 —T7e?)e . 2—In(2) <t <2
Show how to get u* into max min format

u* = min(2, max(0, (A —3)/2))

|



I Bounded Controls

As long as the final position of the state variable
IS not fixed In advance:

Control a < u(t) <b

Solve for the optimal control using the optimality
condition and then impose the bounds on the
formula.

In that exercise, suppose for all controls

0 <wu(t) <5

Then u*(t) = min(5, maz (0, 55))

|



I Multiple States, Controls

max [ (8,30, (0) dt -+ 6(3(0)

subjectto  Z'(t) = g(t, Z(t),d(t)),



I States and Adjoints

Each state solves an ODE.
To each state, there corresponds an adjoint.
The first adjoint corresponds to the first state...



I Hamiltonian

H(t, Z, 0,0 = f(t,Z,7) + X¢t) - §¢, T, 0),
one adjoint corresponding to each state

Note that dot product gives a sum of \; times the
RHS of ODE of i-th state

B



I Necessary Conditions

ZIS/-(t) — gi(t X, ”LT), CCZ‘(t()) — x;0 for ¢ = 1,....,n,

[/

OH
Ni() = 25 Aj(tr) = o, (w(ty)) for j =1,...m,
oz’
OH
f -
0= Bun at u, for k=1,...,m,
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I Example

control the acceleration
1
mm/ To + w’dt
0

vy = x2,21(0) = 0,21(1) = 1
33/2 = U, '732(0) — 07 $2<1)fT66
trajectory starts at 0 position and 0 velocity

—

/! /



I Example continued

Introduce two adjoint variables, one for each
state variable, and form the Hamiltonian,

H = L9 —|-U2 + )\1[62 -+ )\gu.

Lo
(9[131 N
OH

—_

N\
N

N—"



I Solve for adjoints

p
DO
N
iy
N—’
|

(C+1)(t—1).

Using the optimality condition,

H A 1
O—a—:2u+)\2:>u*:——2:C+ (t—l).

- Ou % %




I Solve for states

C+1,t

b= u = zo(t) = ; (5 — 1), asw(0) =0
C+1,t° ¢t

Ty =19 = x1(t) = 5 (6 2), as z1(0) = 0.

Noting that (1) = 1, it follows C' = —7. Thus,
the optimal solution set is

3
u*(t) = 3-3t, xi(t) = 5752——753, r5(t) = 3t——=t°



I Optimality Conditions-Control Boui

U = if 92 <
OH P
Juy, . OH

ur = bz If 8_uk>0'

Hamiltonian is maximized w.r.t. the controls
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I Bounded Controls

As long as the final position of the state variable
IS not fixed In advance:

Control a < u(t) <b

Solve for the optimal control using the optimality
condition and then impose the bounds on the
formula.

In that exercise, suppose for all controls

0 <wu(t) <5

Then u*(t) = min(5, maz (0, 55))

B



I Numerical Algorithm

1. Make an initial guess for v over the interval.
Store the initial guess as w.

2. Using the initial conditions and the stored
values for u, solve the state ODEs forward in
time.

3. Using transversality conditions and stored
values for v and the states, solve adjoints
ODEs backward in time.

4. Update the control by entering the new states

and adjoint values into the characterization of I
Uu.



I Check Convergence, Iterate

If values of the variables in this iteration and the
last iteration are close, output the current values
as solutions. If values are not close, return to

Step 2.



I Virus and Immune Cells Example

virus population y and a population of immune
cells z

y = (1 —u)ry (1 — %) — ay — pyz,

, cyz (1)
— qyz — bZ,
1+ ey

with y(0) = yo and z(0) = .

Z

|



The control function u represents a drug
treatment to reduce the growth of the virus. The
control set U Is

U={u(t) : 0<a<u(t)<B<1,u(t) ismeas.}.

|



I Minimize the Objective Functional

J(u) = Ay(T) + /OT(Azy + Au®) dt,

take A, or A, zero and compare

|



I Hamiltonian

The Hamiltonian is:

H = (Ayy + Au®) + N\ {(1 —u)ry (

Cyz
1+ €

+ Ao { qyz—bz} .



I Adjoints

The form of the first adjoint equation is

OH
N o= ———
1 ay 9
while the form of the second adjoint equation is
oH
Ny = ———.
’ 0z

where A\ (T) = A; and \o(T") = 0 are the

transversality conditions. I



I Characterization of OC




Viral Load

A

Figﬁres1 :mViFusgoPC;jpusloatisén for A, = 1,A, =0, A =

70and B =0.14 I




Immune Response During Therapy
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Figure 2: Immufre Response for A; = 1,4, =

0,A=70and B=0.14 I



Control Application During Therapy
0.06 T T

0.05

0.04 -

0.03

Control

0.02 -

0.01

FigﬂreSS:m an’f?ofiforsoAf :401,22 — 0,A =70 and
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Virus Dynamics During Therapy

1.6 T T T T T T T T —
Virus ——

Viral Load

Figﬁre54:mViFuszoPéfpuTatisén for A, = 0,A;=1,A=

70and B =0.14 I




Immune Response During Therapy
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Figure 5: Immufe Response for A; = 0, Ay =

1,A="70and B =0.14 I



Control Application During Therapy
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I CML Example

This example, taken from the work of Nanda,
Moore, and Lenhart, is a model of drug
therapy for chronic mylegenous leukemia.
C'(t) the cancer cell population
T, (t) the naive T cell population
T.(t) the effector T cell population at time .
Assume that effector T cells are specific to CML,
activated by the presence of CML antigen.

|



I Leukemia Model

d1,, C
— on dnTn — knTn 9 3
dt e (C + 77) 3)
dT, )
dt )

C C
nknTn | eTe deTe o eCTea
h <C+77> h <C+77> v !

(9)
dC Cmax

= (1 —uq)r.C'ln ( - ) — uod.C —~.CT,, (6) I




I Controls

Effect of targeted drug is given by the control u (%)
which slows the production of cancer cells.

This drug affects only cancer cells, not other cells,
u1(t) appears only in C' equation.

us(t) term for treatment by a broad chemotherapy,
which is cytotoxic to all three cell populations.

us appears in all state equations

as a coefficient in the natural attrition terms.
Values of uy > 1 give treatment with cytotoxic drug.

—



I min J(ul, u2)

I B, B,
/ {C + 7u12 + —ufdt} + B3 C(T) — By Ty(T)
0

2
(7)
where

U = {(ul(ﬂ,ﬂa(t))‘ m; < Uz(t) < Mi, meas, 1 = 1,2}

B






Figures-varying parameters

Changes in drug dosing in repsonse to parameter changes

| mm | Wm | SE | BN ,m | BN

20 40



I more info

See my homepage www.math.utk.edu~. ~lenhart
Optimal Control Theory in Application to Biology
short course lectures and lab notes

Book: Optimal Control applied to Biological Models
2007 CRC Press, joint with J. Workman
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