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Introduction: Heterogeneity and population structure

Models for population structure

Structure example: rabies in space

Models for heterogeneity

• individual heterogeneity and superspreaders

• group-level heterogeneity

Population structure and mixing mechanisms

Pair formation and STD transmission

Heterogeneity and structure – what’s the difference?

Tough to define, but roughly…

Heterogeneity describes differences among individuals or groups in 
a population.

Population structure describes deviations from random mixing in a 
population, due to spatial or social factors.

The language gets confusing:

- models that include heterogeneity in host age are called
“age-structured”.

- models that include spatial structure where model parameters 
differ through space are called “spatially heterogeneous”.

Modelling heterogeneity

Break population into sub-groups, each 
of which is homogeneous.

(often assume that all groups mix randomly)

Allow continuous variation among individuals.

Individual-level heterogeneity

Group-level heterogeneity and multi-group models

However, epidemiological traits of each host individual are due to 
a complex blend of host, pathogen, and environmental factors, 

and often can’t be neatly divided into groups 
(or predicted in advance).

Models for population structure

Random mixing Multi-group Spatial mixing 

Network Individual-based model

Models for population structure

Random mixing

or mean-field

• Every individual in population has equal probability of contacting any 
other individual.

• Mathematically simple – “mass action” formulations borrowed from  
chemistry – but often biologically unrealistic.

• Sometimes basic βSI form is modified to power law βSaIb as a 
phenomenological representation of non-random mixing.
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Models for population structure

Multi-group

or metapopulation

• Divides population into multiple discrete groupings, based on spatial or 
social differences.

• To model transmission, need contact matrix or Who Acquires Infection 
From Whom (WAIFW) matrix:

βij = transmission rate from infectious individual in group i to 
susceptible in group j

• Or use only within-group transmission (so βij =0 when i≠j), and 
explicitly model movement among groups.  

Models for population structure

Spatial mixing 

• Used when individuals are distributed (roughly) evenly in space.

• Can model many ways:

• continuous space models (e.g. reaction-diffusion or contact kernel)

• individuals as points on a lattice

• patch models (metapopulation with spatial mixing)

• Used to study travelling waves, spatial control programs, influences of    
restricted mixing on disease invasion and persistence

Models for population structure

Social network

• Precise representation of contact structure within a population

• “Nodes” are individuals and “edges” are contacts

• Important decisions: Binary vs weighted?  Undirected vs directed?    
Static vs dynamic?

• Basic network statistics include degree distribution (number of edges per 
node) and clustering coefficient (How many of my friends are 
friends with each other?) 

• Powerful tools of discrete mathematics can be applied.

Models for population structure

Individual-based model (IBM)

or microsimulation model

• The most flexible framework.

• Every individual in the model carries its own attributes (age, sex, 
location, contact behaviour, etc etc)

• Can represent arbitrarily complex systems ( = realistic?) and ask detailed 
questions, but difficult to estimate parameters and to analyze 
model output; also difficult for others to replicate the model.

• STDSIM is a famous example, used to study transmission and control of 
sexually transmitted diseases including HIV in East Africa.

Rabies in space

Rabies is an acute viral disease of mammals, that causes 
cerebral dysfunction, anxiety, confusion, agitation, progressing to 
delirium, abnormal behavior, hallucinations, and insomnia.

Transmitted by infected saliva, most commonly through biting.

Latent period = 3 – 12 weeks   (in raccoons)
Infectious period = 1 week (ends in death)

Pre-exposure vaccination offers effective protection.

Post-exposure vaccination possible during latent period.
• Until mid 1970s, raccoon rabies was restricted to FL and GA.

• Then rabid raccoons were translocated to the WV-VA border, 
and a major epidemic began in the NE states.

Major Terrestrial Reservoirs of Rabies in 
the United States

RaccoonRaccoon
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Spatial invasion of Rabies across the Northeastern U.S.

23 years (1977-1999)
Rabies in wildlife in US

Smith et al (2002) PNAS 99: 3668-3672
Russell et al (2004) Proc Roy Soc B 271: 21-25.

Models of the spatial spread of rabies 

Simple patch model (+ small long-range 
transmission term) was able to fit data well.

Macroparasitic diseases:
worm burdens in individuals are overdispersed, and well-

described by a negative binomial distribution.

STDs and vector-borne diseases: 
Woolhouse et al (PNAS, 1998) analyzed contact rate data and 

proposed a general 20/80 rule:
20% of hosts are responsible for 80% of transmission

But how to approach other directly-transmitted diseases, 
for which contacts are hard to define?

Individual heterogeneity

Percentage of host population
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Every host is equal

20-20

Heterogeneity in the 
population 20-80

The vital few and insignificant many –
the 20/80 rule: 

20% of hosts account for 80% 
of pathogen transmission

Slide borrowed from Sarah Perkins

R0

Individual reproductive number, ν
Expected number of cases caused by a particular infectious 

individual in a susceptible population.

ν 

ν 

Basic reproductive number, R0
Expected number of cases caused by a typical infectious 

individual in a susceptible population.

ν varies continuously among individuals, with population mean R0.

A model for individual heterogeneity Individual reproductive number, ν

Expected number of cases caused by a particular infectious 
individual in a susceptible population.

Z = actual number of cases caused by a particular infectious 
individual.

Z = 2Z = 0 Z = 1 Z = 3             …

The offspring distribution defines Pr (Z=j ) for all j.

Z ~ Poisson(ν )Stochasticity in transmission  
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Branching process: a stochastic model for disease invasion 
into a large population.

For any offspring distribution, it tells you:
• Pr(extinction)
• Expected time of extinction and number of cases
• Growth rate of major outbreak

ν

Contact tracing for SARS Observed offspring distribution

Number of secondary cases, Z

Estimated distribution of 
individual reproductive number, ν

Singapore SARS outbreak, 2003

What about other emerging diseases?

Hantavirus*Pneumonic plague

Monkeypox SARS, Beijing Smallpox

Variola minor

greater
heterogeneity

Basic reproductive number, R0
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Dynamic effects: stochastic extinction of disease

k = 0.1

k = 1

k→∞

Read more about individual heterogeneity and superspreading in 
Lloyd-Smith et al (2005) Nature 438: 355-359.
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Transmission: mechanisms matter

Transmission dynamics are the core of epidemic models

Take time to think about the mechanisms underlying 
transmission, and to find the best tradeoff between model 
simplicity and biological realism.

e.g.  Between-group transmission in metapopulations

Frequency-dependent transmission vs pair-formation models

Generalized R0 for a multi-group population
Rij = E(# cases caused in group j|infected in group i)

The R-matrix or next-generation matrix

Usual approach considers group membership as static. 
Di = expected infectious period, spent entirely in group i
βij = transmission rate from group i to group j

The expected number of cases in group j caused by an individual 
infected in group i is then:

Rij = Diβij

But what if the host moves and transmission is strictly local? 
Dij = expected time spent in group j by individual infected in 

group i, while still infectious
βj = transmission rate within group j

Now Rij = Dijβj

Analytic approach to R

If movement rules are Markovian, so 
pij = Pr(move from group i to group j):
mj = Pr(recover or die while in group j)

The process can be described by an absorbing Markov chain, 
with overall transition matrix:

R-matrix: Rij = Dijβj

1P)(ID −−=

The expected residence times Dij are then given by the 
fundamental matrix: 
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Transmission in a metapopulation

Simulate:
• range of multi-group population structures
• acute and chronic diseases

1 group of 1000 25 groups of 40 100 groups of 10

Acute disease

Acute and chronic diseases 
with same R0 behave very differently when 

invading a metapopulation.

Chronic disease
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R0 does not predict invasion for this system!
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Units of analysis: R0 versus R*

0R*R

Units of analysis: R0 versus R*

• R* = the expected number of groups infected by the first
infected group (a group-level R0).
(Ball et al. 1997 Annals of Appl. Prob.)

• Analytical expressions for R0 or R* are hard to find for
systems with mechanistic movement, finite group sizes, 
and finite numbers of groups.

• Use “empirical” values: mean values from simulations
where we track who infects whom.  

0R̂ *R̂

Predictors of disease invasion
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R* is a much better predictor of disease invasion 
in a structured population than R0

Cross et al. 2005 Eco. Letters

Approaching R*

μ/γ = expected number of movements between groups by 
an individual during its infectious period

pI = expected proportion of initial group infected following 
the initial outbreak. If R0 is large, then pI ~1.

pInμ/γ = expected number of infectious individuals that will 
disperse from the initial group

R0 ≈ β /γ

So: for a pandemic, we require R0 >1 and pI nμ/γ >1.

crudely, R* will increase with pI n μ/γ and with β /γ.

A proper mathematical treatment of this problem is needed!

Summary on mechanisms in multi-group models

• Need to consider timescales of relevant processes:  
mixing, recovery, transmission, (susc. replenishment)

• In some limits, simpler models do OK. 

• In general, and especially when different processes 
occur on similar timescales, 

mechanistic models are needed to capture dynamics.

• Appropriate “units” aid prediction.

Read more about disease invasion in structured populations in 
Cross et al (2005) Ecol Lett 8: 587-595
Cross et al (2007) JRS Interface 4:315-324..

A mechanistic model for STD transmission

S I
Incidence rate = f (S,I)

STDs are often modelled using frequency-dependent 
incidence:

cFD = rate of acquiring new partners
pFD = prob. of transmission in S-I partnership
S/N = prob. that partner is susceptible

I  = density of infectives

I
N
SpcISf ⎟

⎠
⎞

⎜
⎝
⎛= FDFD),(

Read more about pair-formation models for STDs in
Lloyd-Smith et al (2004) Proc Roy Soc B 271: 625-634
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Pair dynamics

X = single individual
P = pair

k = pairing rate (per capita)
l = pair dissolution rate

Singles

Pairs

k l

P

X

Pair dynamics

Singles

Pairs

kmSI kmIIkmSS kmIS

ll llPSS PSI PII

XS XI

Xy = single individual of type y (where y = S or I)
Pyz = pair of types y and z (where y,z = S or I)

k = pairing rate (per capita)
l = pair dissolution rate
myz = “mixing matrix”

Singles

Pairs

kSmSI kImIIkSmSS kImIS

lSIlSI lIIlSSPSS PSI PII

XS XI

Pair dynamics

Transmission occurs only in S-I pairs (PSI), at rate βpair

Xy = single individual of type y (where y = S or I)
Pyz = pair of types y and z (where y,z = S or I)

ky = pairing rate (per capita)
lyz = pair dissolution rate
myz = “mixing matrix”

Pair-formation epidemic

Consider populations where pairing dynamics are much 
faster than disease dynamics.

Timescale approximation: pairing dynamics are at 
quasi-steady-state relative to disease dynamics

(c.f. Heesterbeek & Metz (1993) J. Math. Biol. 31: 529-539.)

PSS PSI PII

XS XI

βpairPSI

σ

σ σ

μ

μ
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μ

μ μμ

μ
μ

λ

Fast
pairing

timescale

Singles

Pairs

kSmSI kImIIkSmSS kImIS

lSIlSI lIIlSSPSS PSI PII

XS XI

βpair P*SI

Timescale approximation

Challenge: find P*
SI in terms of S, I, and pairing 

parameters. Then incidence rate = βpair P*
SI

Timescale approximation for pairing

Slow
epidemic
timescale

S= XS + 2 PSS + PSI I = XI + 2PII + PSI

Entire
population
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Substitute:

Set dPyz/dt’s = 0,  solve for P*
SI
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⎫

+
==

+
==

IISS

II
IISI

IISS

SS
ISSS

XkXk
Xkmm

XkXk
Xkmm

Assume random 
mixing in pair 
formation

⎭
⎬
⎫

++=
++=

SIIII

SISSS

2
2

PPXI
PPXS Total all susceptibles and

infectives, single and 
paired

Finding P*
SI from fast equations

Disease status has no effect on pairing behaviour.
k = pairing rate for all individuals
l = break-up rate for all partnerships

Simplest case: uniform behaviour

N
SI

lk
kP ⎟

⎠
⎞

⎜
⎝
⎛

+
= pair

*
SIpair ββIncidence rate =

I
N
Spc ⎟

⎠
⎞

⎜
⎝
⎛

FDFDRecall the FD incidence:

pFD =  probability of transmission in S-I partnership

=  1− exp(−βpair ×1/l)

cFD =  rate of acquiring partners

=
lk

kl
kl +

=
+ 11

1

Pair-based transmission and frequency dependence

) (since  pairpair ll <<≈ ββ

N
SI

lk
k

N
SIpc ⎟

⎠
⎞

⎜
⎝
⎛

+
≈ pairFDFD β Use mechanistic derivation of FD to assess this assumption.

Frequency dependence can represent pair-based transmission
but timescale approximation is required.

Pair-based transmission and frequency dependence

We know STD dynamics are driven by pair-based transmission.
FD models implicitly make timescale approximation.

Conversely:

Application to STD models

Transient, highly-transmissible 
STDs

• High chance of infection per 
exposure

• Most individuals recover 
within a month

• e.g. gonorrhoea, chlamydia

Many bacterial STDs

Chronic, less-transmissible 
STDs

• Low chance of infection per 
exposure

• No recovery!    
• e.g. HIV, HSV-2

Many viral STDs

When does FD adequately represent pair-based transmission?

Compare simulations:

frequency-dependent incidence
vs.

full simulation of pair dynamics and disease

for different timescales of:

• disease – bacterial and viral STDs

• pairing dynamics – define average pair lifetime, D 

kl
11D ==
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Timescale approximation breaks down badly for D ~ 3 days

Transient, 
highly-transmissible STD

Chronic,
less-transmissible STD

Frequency dependence is a good depiction of pair-based 
transmission only when mixing occurs fast compared to 
disease timescales. 

Four cases:
1. No effect on behaviour
2. Disease alters pair-formation rate, kS ≠ kI

3. Disease alters break-up rate, lSS ≠ lSI ≠ lII
4. Disease alters both ky and lyz (y, z = S or I)

Singles

Pairs

kSmSI kImIIkSmSS kImIS

lSIlSI lIIlSSPSS PSI PII

XS XI

Modelling disease-induced behaviour changes

For all four cases, the incidence rate takes a generalized

frequency-dependent form:

Modelling disease-induced behaviour changes

where φκ(s,i) is a function of s=S/N, i=I/N and 

the pairing parameters.

N
SIis ),(pair κφβ

kS ∫ kI

lSS ∫ lSI ∫ lII4

kS=kI=k
lSS ∫ lSI ∫ lII

3

kS ∫ kI

lSS=lSI=lII=l2

kS=kI=k
lSS=lSI=lII=l1

φk(s,i)Rates, kCase
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where s=S/N, i=I/N, πy=ky/(ky + lSI) and 

If kS=kI, then πS= πI ªπ. 
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Calculation of R0
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cases.four  allin   
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μσ
β

φ
μσ

β

μσ
φβ

κ

κ

(transmission rate per I individual × duration of infectiousness)

• No dependence on kS

• No dependence on lSS or lII
• Identical to standard FD result, 

if cFD = contact rate of infected individuals
μσ +

= FDFD
0

pcR

Calculation of stability threshold

Consider stability threshold of the no-infection equilibrium, when 
population is wholly susceptible:

R0 > 1 ↔ no-infection equilibrium is unstable to perturbations in I

R0 > 1 ↔

Yields the same result as R0 calculation in all four cases –
though note that just because a quantity is an epidemic threshold 
parameter does not mean that it equals R0!!

e.g. (R0)k for any k>0 also has an epidemic threshold at 1.

),(      where,0 ISf
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