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olving polynomial equations still plays a

major role in the secondary mathematics

curriculum. Over the years how one goes

about solving them has changed

dramatically. Before the arrival of powerful
computers and calculators, one learned how to use
the quadratic formula, various approximation
routines such as the bisection method and
Newton's Method, and if one was really advanced
the cubic and quartic formulas. Now with the arrival
of graphing calculators, easily accessible computer
algebra systems such as WolframAlpha, one can get
quick solutions of any polynomial equation of any
degree.

For me one of the gems of secondary mathematics has
always been the Fundamental Theorem of Algebra that says
that any nth degree polynomial equation with real
coefficients has exactly n roots and that the complex roots
occur in pairs. Recently, I have had the good fortune to be
working on an NSF sponsored project in Computational
Thinking with computer scientist Bahman Kalantari!, who
has developed a wonderful piece of software,
Polynomiography?, that allows one to both solve any
polynomial equation using a variety of iterative methods, in
particular Newton’s Method, but also to create visual
images that give you new and exciting insights into the
nature of the solutions. The images can be stunning.

Since any polynomial equation with real coefficients can
have both real and complex roots, and the real numbers are
a subset of the complex numbers, it makes sense to work in
the complex plane. So imagine you are in the complex plane
and you are going to use Newton’s Method to solve the
quadratic equation x* - 2x — 8 = 0. If you type in 22 - 2z — 8
into the polynomial entry window in Polynomiography and
click on the green arrow key you get the image in Figure 1.
The colored circular regions indicate how fast a guess in
that region will converge to a solution. Figure 1 shows that
an initial guess of 10 — 4i will converge to the solution z = 4
in 4 iterations. Any other guess in the same circular region
will also converge to z = 4 in 4 iterations. Also, any guess in
the green region will converge to z = 4 and any guess in the
red region converges to z = -2

FIGURE 1. SOLUTIONS OF z2 — 2z — 8 = 0 USING
POLYNOMIOGRAPHY WITH AN INITIAL GUESS OF 10 — 4.

If you use Polynomiography to solve a quadratic equation
that has complex solutions you get a different picture. For
example, If you solve the equation z? -2z + 8 = 0 using

WolframAlpha you get z=1++7i orz =1-/7i.

Input Interpretation:

solve | ¥*=2x+8 =0 for x

Results: More d [7] Step-by-step solutic
x=1-iV7 = 1.0000 - 2.6458 i

x=1+iV7 = 1.0000 - 2.6458 i

In Polynomiography, solving z2 — 2z + 8 = 0 with an initial
guess of 10 — 4i gives you the result in Figure 2

FIGURE 2. SOLUTIONS OF z2 — 2z + 8 = 0 USING
POLYNOMIOGRAPHY WITH AN INITIAL GUESS OF 10 — 4.

Again, the colored circular regions indicate how fast a given
guess converges to the solution.

Notice that when there are two real solutions as is the case
in solving z2 — 2z — 8 = 0, Polynomiography creates an image
that is symmetric with respect to the line x =1. The
significance of the coloring is that any guess to the right of
x =1 will create a sequence that converges to the solution



z = 4. This region is often referred to as the Basin of
Attraction for the root z = 4. Similarly, the region to the left
is the Basin of Attraction for the root z = -2.

A similar result applies when there are two complex
solutions but now the image is symmetric with respect to
the x-axis. The region above the axis is the Basin of

Attraction for the root z =1++/7i and the region below is
the Basin of Attraction for the root z=1—+/7i .

What Polynomiography gives you is an image that shows the
roots of the polynomial and the Basins of Attraction for
each when Newton’s Method or any other iterative method
is used.

There is one other possibility for a solution to a quadratic
equation and that is a double root. Figure 3 shows the
image that Polynomiograhy gives for solutions to (z - 2)?> = 0.

FIGURE 3. SOLUTIONS TO (z —2)2 = 0

Things begin to get really interesting when you start
examining solutions of cubics with Polynomiography. The
Fundamental Theorem of Algebra tells us that there are
three possibilities for solutions: three real roots, a real root
and a double real root, and a real root and conjugate
complex roots. Figures 4-6 show the images that
Polynomiography creates for each case.

FIGURE 4. A DOUBLE REAL ROOT AND A SINGLE REAL ROOT

There has been a dramatic change in the images. The Basins
of Attractions are no longer separated by straight lines as
was the case with quadratics, but now consist of very
intricate figures that turn out to be fractal like in the
following sense. If you zoom in on the boundary, any time
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FIGURE 5. THREE REAL ROOTS

FIGURE 6. A PAIR OF COMPLEX CONJUGATE ROOTS AND A SINGLE
REAL ROOT.

you have an image that contains two of the colors there will
also be the third. Or put another way as you zoom in the
image keeps repeating itself. It turns out that the images you
get for finding the roots of any polynomial of degree greater
than 2 will have Basins of Attraction whose boundaries are
fractal.

Another feature of these images is that they are symmetric.
Many of them will be symmetric with respect to the x — axis
due to the fact that complex solutions come in conjugate
pairs.

Moving up to quartics with real coefficients, there are now
the following cases to consider, and each case produces a
different type of image:

e All four real roots are distinct.
* A triple real root and a distinct second real root.
¢ A double real root and two distinct real roots.

¢ Two distinct double real roots.
* A pair of conjugate complex roots and two distinct
real roots.
* A pair of conjugate complex roots and a double real root
A double pair of conjugate complex roots.

e Two distinct pairs of complex roots.

Solving a given quartic with Polynomiography shows right
away what the nature of the solutions is. For example, solving
z* - 322 + 2z — 4 = 0 shows that there is a pair of conjugate
complex roots and two distinct real roots.
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FIGURE 7. SOLUTIONS FOR z% — 322 + 2z —4 = 0.

One can use Polynomiography to examine and create images
for any of the possible types of solutions for any nth-degree
polynomial.

There are many ways one can use the software to create
interesting images. Here is one of my favorites. Start with a
quadratic function such as f(z) = z2 - 2z + 8 and then create
images of the solutions of f(z"*) = z2" — 22" + 8 for increasing
values of n. Figures 8, 9, and 10 show the images for

Az*) =0, f(iz3) =0 and f(z*) = 0.

FIGURE 8. SOLUTIONS FOR f(z2) =0.

FIGURE 9. SOLUTIONS FOR f(z3) = 0.

FIGURE 10. SOLUTIONS FOR f(z*) = 0.

The software really encourages you to play. All you need are
some polynomials and a willingness to experiment. Figure 11
shows my latest favorite that I created just by playing
around. I used the polynomial z!2 + z2 — 4z + 54 = 0.

FIGURE 11. POLYNOMIOGRAPH FOR z12 + 22 — 4z + 54 = 0.

Polynomiography can also be used to help students visualize
complex nth roots. For example, if one compares the
Polynomiograph for z*-1 in Figure 12 to the
Polynomiograph for z* — (1 + i) in Figure 13, one can see that
the roots still lie on the vertices of a square but the square
has been enlarged and rotated.

FIGURE 12. POLYNOMIOGRAPH FOR z* — 1.

FIGURE 13. POLYNOMIOGRAPH FOR z%— (1 + i).
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