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ABSTRACT

We show that generating all negative cycles of a weighted graph is a hard enumeration prob-
lem, in both the directed and undirected cases. More precisely, given a family of (directed)
negative cycles, it is an NP-complete problem to decide whether this family can be extended
or there are no other negative (directed) cycles in the graph, implying that (directed) neg-
ative cycles cannot be generated in polynomial output time, unless P=NP. As a corollary,
we solve in the negative two well-known generating problems from linear programming: (i)
Given an (infeasible) system of linear inequalities, generating all minimal infeasible subsys-
tems is hard. Yet, for generating maximal feasible subsystems the complexity remains open.
(ii) Given a (feasible) system of linear inequalities, generating all vertices of the correspond-
ing polyhedron is hard. Yet, in the case of bounded polyhedra the complexity remains open
keywords polytope, polyhedron, polytope-polyhedron problem, vertex, face, facet, enumer-
ation problem, vertex enumeration, facet enumeration, graph, cycle, negative cycle, linear
inequalities, feasible system



1 Introduction and Main Results

Let G = (V,E) be a directed graph (digraph)and w : E → R be a real-valued weight
function defined on its arcs. We will call such a pair a weighted digraph and denote it by
(G,w). For every subset of arcs F ⊆ E its weight is defined as the total weight of all its
arcs, w(F ) =

∑

e∈F w(e). In particular, a simple directed cycle is called negative if its weight
is negative. Finally, let us denote by C− = C−(G,w) the family of negative cycles of (G,w),
i.e., C− = {C ⊆ E | C is a simple directed cycle, with w(C) < 0}.

First we consider the problem of generating exhaustively all negative cycles of a given
weighted directed graph (G,w), in other words the problem of enumerating the family
C−(G,w). Since the number of negative cycles may be exponential in the size of input
description, i.e., the size of G and w, the efficiency of such enumeration algorithms is mea-
sured customarily in both the input and output sizes (see e.g., Valiant [1979], Lawler et al.
[1980]). More precisely, such an enumeration problem is said to be solvable in polynomial
total time if the output can be generated in time polynomial in the input and output sizes.
It is easy to see that a family C is enumerable in polynomial total time if and only if for each
subfamily X ⊆ C, the problem of deciding X 6= C, and if yes, finding C ∈ C \ X , is solvable
in time polynomial in size(G,w) and |X |. On the other hand, when this decision problem is
NP-hard, the enumeration problem is called NP-hard, too (see Lawler et al. [1980]). Thus,
NP-hard enumeration problems are unlikely to have efficient solutions, unless P=NP.

Our main result claims that enumerating negative directed cycles of a weighted directed
graph is a hard enumeration problem.

Theorem 1 Given a weighted digraph G = (V,E), w : E → R and a family X ⊆ C− of its
negative directed cycles, it is an NP-complete problem to decide whether X 6= C−, even if w

takes only two different values.

Let us remark that all directed cycles of a directed graph can be enumerated efficiently,
e.g., by a simple backtracking algorithm, just like all simple cycles of an undirected graph
(see e.g., [Read and Tarjan, 1975]). Let us also add that the analogous hardness result can
be shown for undirected graphs, as well. Let us also denote by C− = C−(G,w) the family
of all simple cycles of an undirected graph G = (V,E), the edges in which have a negative
total weight with respect to a given weight function w : E → R.

Theorem 2 Given a weighted undirected graph G = (V,E), w : E → R, and a family
X ⊆ C−(G,w) of its negative cycles, it is an NP-complete problem to decide whether X 6= C−,
even if w takes only two different values.

Let us note that if w takes the same value for all edges (arcs), then negative (directed)
cycles either do not exist, or all (directed) cycles are negative. Thus, the enumeration
problems for both directed and undirected graphs can efficiently be solved, as we noted
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above. Furthermore, when w takes only two different values, those can be assumed to be
integers, and hence by edge (arc) splitting) the input can be transformed to one in which
all edges (arcs) have weight ±1. Though this transformation may increase the size of the
input in a non polynomial way, in case of the specific constructions we provide in the proofs
of the above two theorems, it is a polynomial transformation, implying that generating all
negative (directed) cycles is NP-hard even if all edges (arcs) have weights ±1.

We shall derive several consequences of the above results, including the hardness of gen-
erating all vertices of a (possibly unbounded) polyhedron, generating all minimal infeasible
subsystems of a system of linear inequalities, etc. We prove Theorems 1 and 2 in sections 2
and 3, respectively.

1.1 Negative Cycles and Minimal Infeasible Subsystems

Let us first note that deciding the existence and finding a negative cycle in a weighted
directed graph are polynomially solvable tasks. Gallai [1958] proved that (G,w) has no
negative cycle if and only if by a potential transformation all edge weights can be changed
to nonnegative values, while Karp [1978] provided an O(|V |3) algorithm to find a directed
cycle with the minimum average weight, which of course must be negative if the graph has
negative cycles at all. We shall utilize Gallai’s approach to reformulate the problem and
derive some interesting consequences.

To a weighted digraph (G,w), where G = (V,E) and w : E → R, let us associate a
polyhedron P (E,w) defined by

P (E,w) = {x ∈ RV | xu − xv ≥ −w(u, v) for all arcs (u, v) ∈ E} (1)

Let us note that every vector x ∈ P (E,w) is a potential in Gallai’s sense, proving that G

is negative cycle free. Namely, defining w′(u, v) = w(u, v) + xu − xv for all arcs (u, v) ∈ E

we get another weighting of the arcs of G, such that w′(C) = w(C) for all directed cycles
C ⊆ E, and for which w′(u, v) ≥ 0 for all arcs (u, v) ∈ E, according to the definition of
P (E,w). This latter shows that G is indeed negative cycle free.

Applying thus Gallai’s result to subgraphs of G we obtain that P (E ′, w) = ∅ for some
E ′ ⊆ E if and only if the subgraph G′ = (V,E ′) contains a negative cycle with respect to
the weight function w. Therefore, the minimal infeasible subsystems of the system of linear
inequalities (1) correspond in a one-to-one way to the negative cycles of (G,w). Hence,
Theorem 1 implies the following result.

Corollary 1 Enumerating all minimal infeasible subsystems of a system of linear inequal-
ities is an NP-hard enumeration problem, even if we restrict the input to linear systems
involving at most two variables in each inequality. �
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The problems of finding minimal infeasible subsystems of a system of linear inequalities,
sometimes called IIS (Irreducible Inconsistent Subsystems) or Helly systems, and its natural
dual of finding maximal feasible subsystems received ample attention in the literature, see
e.g., [Ryan, 1996, Pfetsch, 2002]. The optimization versions of these problems, i.e., finding
a maximum cardinality feasible subsystem, and finding a minimum cardinality infeasible
subsystem are known to be NP-hard, see e.g., [Johnson and Preparata, 1978, Chakravarti,
1994, Pfetsch, 2002].

1.2 Negative Cycles and Vertex Enumeration

Let us recall that the infeasibility of a system of linear inequalities is well characterized by
Farkas’ lemma: either the system Ax ≥ b has a solution, or there exists a nonnegative vector
y ≥ 0 such that yT A = 0 and yT b > 0, but not both (see [Farkas, 1901]). Using this claim,
Gleeson and Ryan [1990] associated to a system of linear inequalities Ax ≥ b, A ∈ Rm×n and
b ∈ Rm, a so called alternative polyhedron defined as Q = {y ∈ Rm

+ | yT A = 0, yT b = 1}, and
observed that minimal infeasible subsystems of Ax ≥ b are in a one-to-one correspondence
with vertices of Q. Indeed, for every vector y ∈ Q let us consider the subsystem of Ax ≥ b

corresponding to the support set S(y) = {i | yi 6= 0}. By Farkas’ lemma, we have that
these corresponding subsystems are indeed infeasible. Conversely, if S is the index set of an
infeasible subsystem of Ax ≥ b, then again by Farkas’ lemma we have a vector y ∈ Q for
which S(y) ⊆ S. Thus, minimal infeasible subsystems correspond to vectors y ∈ Q with
minimal support sets, and hence those are indeed vertices of Q.

This observation, coupled with Corollary 1 implies the hardness of enumerating the ver-
tices of polyhedra.

Corollary 2 Enumerating all vertices of a rational polyhedron, given as the intersection of
finitely many closed half-spaces, is an NP-hard enumeration problem.

Proof: Let us consider an infeasible system of rational linear inequalities Ax ≥ b, and its
alternative polyhedron Q. We can write Q equivalently as Q = {y ∈ Rm | y ≥ 0, AT y ≥
0, − AT y ≥ 0, bT y ≥ 1, − bT y ≥ −1}, i.e., as the intersection of m + 2n + 2 closed half-
spaces. Thus, by the above observation, enumerating the vertices of this rational polyhedron
would also enumerate all minimal infeasible subsystems of Ax ≥ b, which is an NP-hard
enumeration problem according to Corollary 1. �

Vertex enumeration is a fundamental problem in computational geometry and polyhedral
combinatorics (see e.g., Dyer and Proll [1977] for a list of applications), and has many equiv-
alent formulations. Most notably for bounded polyhedra vertex enumeration is equivalent
with facet generation, i.e., enumerating the facets of a polytope given by an explicit list of
its vertices(see e.g., the so called polytope-polyhedron problem in Lovász [1992]).
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Let us emphasize that whenever the system of equations AT y = 0, bT y = 0 has a nontrivial
solution for which y ≥ 0, then Q in the above Corollary 2 is an unbounded polyhedron. Thus,
our reduction through Theorem 1 yields in general, unbounded polyhedra, and hence does
not imply the hardness of vertex generation for bounded polyhedra, which still remains
an open problem. Furthermore and equivalently, the complexity of enumerating together
vertices and extreme rays of polyhedra is also an open problem.

Numerous algorithmic ideas have been introduced in the literature (either for vertex or
for facet enumeration, see e.g., Charnes et al. [1953], Motzkin et al. [1953], Balinski [1961],
Chand and Kapur [1970], Mattheiss [1973], Dyer and Proll [1977], Chvátal [1983], Dyer
[1983], Swart [1985], Seidel [1986], Avis and Fukuda [1992], Provan [1994], Avis and Fukuda
[1996], Bremner et al. [1998], Bussieck and Lübbecke [1998], Abdullahi [2003]). Efficient
algorithms (typically linear in the number of vertices) were proposed for several special
cases, including non-degenerate polyhedra, i.e. in which every vertex is incident with exactly
n facets, [Avis and Fukuda, 1992], network polytopes [Provan, 1994], polytopes with zero-
one vertices [Bussieck and Lübbecke, 1998], and polyhedra in which every facet defining
inequality involves at most two nonzero coefficients [Abdullahi, 2003]. However, no method
proved to be efficient (yet) for the general case. In fact several publications [Avis et al.,
1997, Fukuda et al., 1997, Bremner, 1999] analyzed the proposed general purpose methods
for vertex/facet enumeration, and showed that all of the known algorithms may require in the
worst case superpolynomial time in the output size. Along the same lines, Corollary 2 shows
that vertex enumeration is indeed a hard enumeration problem for unbounded polyhedra
(unless of course P=NP).

In analyzing the reasons why backtracking methods are not efficient for vertex enumer-
ation, in general, Fukuda et al. [1997] noted that such methods require solving repeatedly
decision problems, which turn out to be NP-hard. In particular, they showed that for a
given rational polyhedron P and an open rational half-space H = {x ∈ Rn | αT x > β}, it
is NP-hard to decide if P has a vertex in H. Let us note that the same decision problem
for bounded polyhedra is much easier, since it can be decided by maximizing αT x over P ,
which is a linear programming problem, known to be polynomially solvable by [Khachiyan,
1979]. We can show, as a next corollary of Theorem 1 that the enumerative version of this
decision problem is hard, already for polytopes.

To arrive to this claim, let us recall that the nontrivial vertices of the circulation polytope
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of a directed graph G = (V,E) correspond to simple directed cycles of G. Let us remark
that P (G) is a frequently occurring polytope in the optimization literature, the vertices and
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facial structure of which is well studied and understood. In particular, its vertices can be
generated in linear (output) time either by cycle enumeration Read and Tarjan [1975] or by
the method proposed in Bussieck and Lübbecke [1998].

Associating further to a rational weight function w : E → R an open rational half-space
defined by

H =


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y ∈ RE
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∑

(u,v)∈E

w(u, v)yuv < 0







we get that the support sets of vertices of P (G) belonging to H are exactly the negative
cycles of the weighted directed graph (G,w). Thus, Theorem 1 readily implies the following
claim.

Corollary 3 Given a rational polyhedron P and an open rational half-space H, it is NP-hard
to enumerate all vertices of P which belong to H, even if P is bounded. �

Many applications (see e.g. Dyer and Proll [1977]) call for the enumeration of all those
basic feasible solutions to a linear programming problem (i.e., vertices of the corresponding
polyhedron), the corresponding objective function value of which is above a given threshold.
Corollary 3 indicates that unfortunately such enumeration problems might be difficult, in
general, unless P=NP.

A further consequence of Theorem 1 is that enumerating all vertices of a polytope P

which do not belong to a given face of P is also hard, in general.

Corollary 4 Given a polytope P and a face F of it, it is NP-hard to enumerate the vertices
of P which do not belong to F .

Proof: Note that P ′ = P (G) ∩ H, as defined above, is a polytope, for which H is facet
defining, and the vertices of which outside H correspond in a one-to-one way to the negative
cycles of the weighted graph (G,w) to which we associated H and P (G). Thus the claim
follows by Theorem 1. �

1.3 Four Geometric Enumeration Problems

Let us finally recall four strongly related geometric enumeration problems. Let A ⊆ Rn be a
given subset of vectors in Rn, fix a point z ∈ Rn called the center, and consider the following
four definitions:

• A simplex is a minimal subset X ⊆ A containing the center in its convex hull, i.e.,
z ∈ conv(X).
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• An anti-simplex is a maximal subset X ⊆ A not containing the center in its convex
hull, i.e., z 6∈ conv(X).

• A body is a minimal (full-dimensional) subset X ⊆ A containing the center in the
interior of its convex hull, i.e., z ∈ int(conv(X)).

• An anti-body is a maximal subset X ⊆ A not containing the center in the interior of
its convex hull, i.e., z 6∈ int(conv(X)).

Equivalently, a simplex (body) is a minimal collection of the given vectors not contained
in an open (closed) half-space through the center, while an anti-simplex (anti-body) is a
maximal collection of vectors contained in an open (closed) half space through the center.
It can be seen easily that |X| ≤ n + 1 for a simplex, and that n + 1 ≤ |X| ≤ 2n for a body.

For a given point set A ⊆ Rn and center z ∈ Rn, let us denote respectively by S and B
the hypergraphs on the base set A, consisting of all simplices, and respectively all bodies of
A. The corresponding families of maximal independent sets of these two hypergraphs are
respectively all anti-simplices and anti-bodies of A, denoted respectively by S∗ and B∗, i.e.,

S∗ = { X ⊆ A | X is maximal such that X + S ∀S ∈ S },
B∗ = { Y ⊆ A | Y is maximal such that Y + B ∀B ∈ B }.

Simplices, anti-simplices, bodies and anti-bodies can naturally be related to minimal
infeasible or maximal feasible subsystems of certain linear systems of inequalities. Namely,
let us denote by A ∈ Rm×n, where m = |A|, the matrix whose row vectors are the vectors of
A, and let e ∈ Rm denote the m-dimensional vector of all ones.

It follows from the above definitions that simplices and anti-simplices are in a one-to-one
correspondence respectively with the minimal infeasible and maximal feasible subsystems of
the linear system of inequalities:

Ax ≥ e, x ∈ Rn. (2)

Similarly, it follows that bodies and anti-bodies correspond, in a one-to-one way, respec-
tively to the minimal infeasible and maximal feasible subsystems of the system:

Ax ≥ 0, x 6= 0. (3)

As of the complexity of these enumeration problems, it is known that the generation of
anti-bodies is a hard problem:

Proposition 1 (Boros et al. [2004]) Given a set of vectors A ⊆ Rn, and a partial list
X ⊆ B∗ of the anti-bodies of S, it is NP-hard to determine if the given list is incomplete,
i.e. X 6= B∗, or not. Equivalently, given an infeasible system (3), and a partial list of its
maximal feasible subsystems, it is NP-hard to determine if the given partial list is incomplete,
or not. �
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Enumeration of bodies turns out to be at least as hard as the well-known hypergraph
transversal problem [Eiter and Gottlob, 1995], which is not known to be solvable in incre-
mental polynomial time.

Proposition 2 (Boros et al. [2004]) The problem of incrementally enumerating bodies,
for a given set of m + n points A ⊆ Rn and center z = 0, includes as a special case the
problem of enumerating all minimal transversals for a given hypergraph H with n hyperedges
on m vertices. Equivalently, generating minimal infeasible subsystems of (3) is at least as
hard as hypergraph transversal generation. �

It should be added that the best currently known algorithm for the hypergraph transversal
problem runs in incremental quasi-polynomial time (see Fredman and Khachiyan [1996]).

The problem of generating simplices turns out to be equivalent, in general, with the
problem of enumerating the vertices of bounded polyhedra, or enumerating the vertices and
extreme rays of possibly unbounded polyhedra. To see this, let us consider a vector set
A ⊆ Rn, and center z = 0, and consider the polyhedron P = {x ∈ Rn | Ax = −b, x ≥ 0},
where b ∈ A, and the column vectors of matrix A = [a1, ..., an] are the vectors of A \ {b}
(i.e., n = |A| − 1). Recall that for a vector y ∈ Rn we called the set S(y) = {i | yi 6= 0} its
support set.

Proposition 3 If y ∈ P is a vertex of P then the set {ai | i ∈ S(y)} ∪ {b} is a simplex
of A, while if y ∈ P is an extreme ray of P then the set {ai | i ∈ S(y)} is a simplex of
A (assuming z = 0 as center, in both cases). Furthermore, every simplex of A with center
z = 0 correspond in this way either to a vertex or to an extreme ray of P .

Proof: The first two claims are easy to see by the definitions. For the last claim, let S ⊆ A
be a simplex, i.e., a minimal subset for which 0 ∈ conv(S). If b ∈ S, then we have for some
λa ≥ 0, a ∈ S \ {b} and λb ≥ 0, with λb +

∑

a∈S\{b} λa = 1 that

−λbb =
∑

a∈S\{b}

λaa.

Since S is minimal, we must have all these coefficients positive, and thus

−b =
∑

a∈S\{b}

λa

λb

a.

Thus the vector x ∈ Rn, defined by

xi =

{

λai

λb
if ai ∈ S \ {b},

0 otherwise
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for i = 1, ..., n, is a vertex of P , again by the minimality of S. While if b 6∈ S, then we have

0 =
∑

a∈S

λaa

for some positive coefficients λa > 0, a ∈ S for which
∑

a∈S λa = 1, and thus the vector
x ∈ Rn, defined by

xi =

{

λai
if ai ∈ S,

0 otherwise

for i = 1, ..., n, is a vertex of P , once more by the minimality of S. �

In particular, if P = {x ∈ Rn | Ax = b, x ≥ 0} is a bounded polyhedron, i.e., if Ax = 0
has no nontrivial nonnegative solutions, then the vertices of P correspond in a one-to-one
way to the simplices of the set A formed by the column vectors of A and b, with center
z = 0.

For the special case of vectors A ⊆ Rn in general position, we have B = S, and con-
sequently the problem of enumerating bodies of A turns into the problem of enumerating
vertices of the polytope {x ∈ Rn | Ax = 0, eT x = 1, x ≥ 0}, each vertex of which is non-
degenerate and has exactly n + 1 positive components. For such kinds of simple polytopes
there exist algorithms that generate all vertices with polynomial delay (see e.g., Chvátal
[1983], Avis and Fukuda [1992]).

Let us finally mention that, although the status of the problem of enumerating all max-
imal feasible subsystems of (2) is not known in general, the situation changes if we fix a
consistent subfamily of inequalities, and ask for enumerating all its extensions to a maximal
feasible subsystem. In fact, such a problem turns out to be NP-hard, even if we fix only
non-negativity constraints.

Proposition 4 (Boros et al. [2004]) Let A ∈ Rm×n be an m × n matrix, b ∈ Rm be an
m-dimensional vector, and assume that the system

Ax ≥ b, x ∈ Rn (4)

has no solution x ≥ 0. Let F be the family of all maximal subsystems of (4) which can be
satisfied by a non-negative solution x. Then, given a partial list X ⊆ F , it is an NP-complete
problem to determine if the list is incomplete, i.e., if X 6= F , even if b is a unit vector, and
entries in A are either, −1, 1, or 0. �

We conclude with the observation that the problem of finding, for an infeasible system

Dx ≥ f, D′x ≥ f ′, (5)
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all maximal feasible subsystems extending the feasible subsystem D′x ≥ f ′, naturally in-
cludes both the problems of generating anti-simplices and simplices. Clearly, the former
problem can be written in the form (5) by considering (2) and all maximal extensions
of an empty subsystem. For the latter problem, note that the vertices of the polytope
{x ∈ Rn | Ax = b, x ≥ 0}, where b 6= 0, are in one-to-one correspondence with the
maximal feasible extensions of the subsystem Ax = b, x ≥ 0 in the infeasible system
Ax = b, x ≥ 0, x ≤ 0. Although the general problem, of generating maximal feasible
extensions, is NP-hard as shown above, the special cases of generating simplices and anti-
simplices remain open.

2 Proof of Theorem 1

In this section we prove Theorem 1 by a reduction from satisfiability, a well-known NP-
complete problem (see Cook [1971]).

Let us consider n propositional Boolean variables Xj, j = 1, .., n, denote by X = 1 − X

the negation of X, call variables and their negations literals, and elementary disjunctions
of literals clauses. Let us next consider an arbitrary conjunctive normal form (CNF) φ =
C1 ∧C2 . . .∧Cm, i.e., where Ci, i = 1, ...,m are clauses. A truth assignment to the variables
is called satisfying for the CNF φ, if φ evaluates to true, i.e., if at least one literal evaluates
to true in each of the clauses of φ.

In what follows, we shall associate to φ a weighted directed graph (G,w) and set X
of negative cycles of G such that (G,w) has a negative cycle not belonging to X if and
only if φ has a satisfying assignment. Because (G,w) and X is constructed from φ in O(mn)
time, and the weight function w uses only two different values (1 and −2), Theorem 1 follows
readily from this construction by Cook [1971], since the decision problem ”Is there a negative
cycle in (G,w) which does not belong to X?” clearly belongs to NP. To complete the proof
of Theorem 1, we provide below a construction with these properties, such that there is a
one-to-one correspondence between satisfying assignments to φ and negative cycles of (G,w)
which not belong to X .

To describe our construction, let us denote for j = 1, ..., n respectively by oj and ōj the
number of occurrences of literal Xj and its negation Xj, denote by xk

j the kth occurrence of

Xj, k = 1, ..., oj , and by x̄k
j the kth occurrence of Xj, k = 1, ..., ōj , and let L denote the set

of all literal occurrences, i.e.,

|L| =
m
∑

i=1

|Ci| =
n
∑

j=1

oj + ōj.

Since monotone literals can be easily eliminated from a satisfiability problem, we can assume
without any loss of generality that oj > 0 and ōj > 0 hold for all variables j = 1, ..., n.

For instance, if n = 3 and

φ = (X1 ∨ X2 ∨ X3) ∧ (X1 ∨ X2 ∨ X3) ∧ (X1 ∨ X2 ∨ X3), (6)
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then we have o1 = 2, ō1 = 1, o2 = 2, ō2 = 1, o3 = 1, ō3 = 2,

L = {x1
1, x

1
2, x̄

1
3, x

2
1, x̄

1
2, x

1
3, x̄

1
1, x

2
2, x̄

2
3}

and
φ′ = (x1

1 ∨ x1
2 ∨ x̄1

3) ∧ (x2
1 ∨ x̄1

2 ∨ x1
3) ∧ (x̄1

1 ∨ x2
2 ∨ x̄2

3).

We define the vertex set of the graph G = (V,E) associated to φ as

V = U ∪ Q ∪
n
⋃

j=1

(Yj ∪ Zj),

where U , Q, and Yj and Zj for j = 1, ..., n are pairwise disjoint, defined as

U = {uk | k = 0, 1, ...,m + n},

Q = {a(ℓ), b(ℓ) | ℓ ∈ L},

Yj = {yjk | k = 1, ..., oj − 1} for j = 1, ..., n, and

Zj = {zjk | k = 1, ..., ōj − 1} for j = 1, ..., n.

The graph itself has a ring structure, the skeleton of which is the set U . For every variable
Xj of φ we have two parallel directed paths from uj−1 to uj. The first path corresponding
to Xj contains vertices Yj (and some other vertices), while the second path, corresponding
to Xj passes through vertices of Zj (j = 1, ..., n). For convenience, we also introduce the
notations

yj0 = zj0 = uj−1 and yj,oj
= zj,ōj

= uj (7)

for j = 1, ..., n. To every clause Ci of φ we associate |Ci| parallel directed paths from un+i−1 to
un+i, one for each of the literals in Ci (i = 1, ...,m). Finally vertices a(ℓ) and b(ℓ) correspond
exclusively to literal occurrence ℓ ∈ L.

Let us consider next the weighted graph H(a, b, p, q, r, s) (see Figure 1) on six nodes a,
b, p, q, r and s, having six arcs, the weights of which are as follows:

w(a, b) = w(b, a) = − 2 and

w(p, a) = w(b, q) = w(r, b) = w(a, s) = 1.
(8)

To every literal occurrence ℓ ∈ L we associate a disjoint copy of H(a, b, p, q, r, s), and
denote by a(ℓ), b(ℓ), etc., its nodes, and by Eℓ its arc set. Note that each of these small
subgraphs can be decomposed into two directed paths of 3 − 3 arcs, Eℓ = Ev

ℓ ∪ Ec
ℓ , where

Ev
ℓ = { (p(ℓ), a(ℓ)), (a(ℓ), b(ℓ)), (b(ℓ), q(ℓ)) }, and

Ec
ℓ = { (r(ℓ), b(ℓ)), (b(ℓ), a(ℓ)), (a(ℓ), s(ℓ)) }.
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p(l) q(l)

a(l) b(l)

r(l)s(l)

1

−2

1

1

−2

1

Figure 1: The directed graph H(a, b, p, q, r, s) associated with literal occurrences.

Finally we set

E = E0 ∪
⋃

ℓ∈L

Eℓ

where E0 = {(um+n, u0)} with weight w(um+n, u0) = −2.
In each of the subgraphs corresponding to the literal occurrences ℓ ∈ L, we have the nodes

a(ℓ) and b(ℓ) already introduced in Q ⊆ V , while the nodes p(ℓ), q(ℓ), r(ℓ) and s(ℓ) for ℓ ∈ L

are corresponding to some other vertices of G, according to the following definitions:

p(ℓ) = yj,k−1 and q(ℓ) = yjk if ℓ = xk
j ,

p(ℓ) = zj,k−1 and q(ℓ) = zjk if ℓ = x̄k
j , and

r(ℓ) = un+i−1 and s(ℓ) = un+i if ℓ ∈ Ci.

In other words, for every literal occurrence ℓ of clause Ci the set Ec
ℓ forms a 3-arc directed

path from un+i−1 to un+i. Furthermore by (7) and by the above definitions, the sets Ev
ℓ for

ℓ = x1
j , x

2
j , ..., x

oj

j form a directed path from uj−1 to uj through the vertices of Yj, consisting

of 3oj arcs, for every variable Xj. Similarly, the sets Ev
ℓ for ℓ = x̄1

j , x̄
2
j , ..., x̄

ōj

j form another
directed path from uj−1 to uj through the vertices of Zj, consisting of 3ōj arcs.

In summary, G = (V,E) consists of |V | = 3|L| + m − n + 1 vertices and |E| = 6|L| + 1
arcs, and the weight function w takes only values in {−2, 1}.

Returning to the example CNF φ given in (6), the corresponding graph G = (V,E) is
shown in Figure 2. To make the drawing of such a graph visually more clear, nodes a(ℓ)
and b(ℓ) of G are represented by two-two separate points of the picture, labeled as a(ℓ) and
a′(ℓ), and as b(ℓ) and b′(ℓ), respectively. Similarly, node un is represented by two points in
the figure, labeled by un and u′

n. Arcs in the sets Ec
ℓ for ℓ ∈ L are drawn as dashed lines,

while those belonging to Ev
ℓ for ℓ ∈ L are drawn as solid lines.

Let us observe first that the arcs (a(ℓ), b(ℓ)) and (b(ℓ), a(ℓ)) form a directed cycle of total
weight −4 for every literal occurrence ℓ ∈ L. Let us denote by X the set of these directed
cycles, i.e., |X | = |L|, and let us denote by F the set of all directed negative cycles of G.
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Figure 2: G is obtained by identifying vertices a(l), a′(l), and b(l), b′(l), for each literal l of
φ′, and u3, u′

3 in the graph above.

We claim that from every satisfying assignment X of φ we can construct a directed
negative cycle DX ∈ F \ X , and conversely, from every directed negative cycle D ∈ F \ X
we can construct a satisfying assignment XD of φ. As we noted at the beginning of this
section, this claim implies Theorem 1.

To see this claim, let us first consider a satisfying assignment X = (X1, ..., Xn) ∈ {0, 1}n

of φ. Since X satisfies φ, we have a literal ℓi ∈ Ci in every clause i = 1, ...,m such that ℓi

evaluates to true at X (i.e., ℓi(X) = 1). Let us also denote by W the set of all those literal
occurrences, which evaluate to false at X, i.e., W = {ℓ ∈ L | ℓ(X) = 0}. Clearly, ℓi 6∈ W for
i = 1, ...,m by the above definitions. Then, the set of arcs

DX =

(

m
⋃

i=1

Ec
ℓi

)

∪

(

⋃

ℓ∈W

Ev
ℓ

)

∪ {(um+n, u0)}.

forms a simple directed cycle in G not belonging to X . Since we have w(Ec
ℓ ) = w(Ev

ℓ ) = 0 for
all literal occurrences ℓ ∈ L, it follows by the above definitions that w(DX) = w(um+n, u0) =
−2, i.e., DX ∈ F \ X as claimed.

Before proving the reverse direction of our main claim, let us first observe some simple
properties of our construction. To simplify notation, recall that Eℓ = Ec

ℓ ∪Ev
ℓ for ℓ ∈ L, and

that the 6-vertex subgraphs induced by the arc set Eℓ have the same structure and weights,
as in Figure 1, for all ℓ ∈ L. The following property of these subgraphs will be instrumental
in our proof.

Lemma 1 Given a simple directed cycle D ⊆ E of G, not belonging to X , and given a literal
occurrence ℓ ∈ L, we have

w(D ∩ Eℓ) ∈ {0, 2, 4}.
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Moreover, w(D ∩ Eℓ) = 0 only if the set D ∩ Eℓ is one of the following three subsets of Eℓ:
Ec

ℓ , Ev
ℓ , or ∅.

Proof: Since D is a simple cycle not belonging to X , D cannot contain both arcs (a(ℓ), b(ℓ))
and (b(ℓ), a(ℓ)). Thus, denoting by Aℓ = {(p(ℓ), a(ℓ)), (a(ℓ), s(ℓ))} and Bℓ = {(r(ℓ), b(ℓ)), (b(ℓ), q(ℓ))}
we have that D ∩ Eℓ is one of the following six sets: ∅, Aℓ, Bℓ, Aℓ ∪ Bℓ, Ec

ℓ , and Ev
ℓ . Since

we have w(∅) = w(Ec
ℓ ) = w(Ev

ℓ ) = 0, w(Aℓ) = w(Bℓ) = 2 and hence w(Aℓ ∪ Bℓ) = 4, the
statement follows. �

Returning to the reverse direction of our main claim, let us consider a simple directed
negative cycle D ∈ F \ X of G. Since

w(D) =
∑

ℓ∈L

w(D ∩ Eℓ) + w(D ∩ {(um+n, u0)})

we must have by Lemma 1 that (um+n, u0) ∈ D and

w(D ∩ Eℓ) = 0 for all ℓ ∈ L. (9)

We show first that D passes through all vertices in U , includes exactly one of the two
parallel paths between uj−1 and uj for j = 1, ..., n, and exactly one of the parallel paths
between un+i−1 and un+i for all i = 1, ...,m.

As we observed above, we have u0 as a vertex of D. Thus D must contain an arc leaving
u0, say it contains (u0, ax1

1
). Then, by (9) and by Lemma 1 we must have Ev(x1

1) ⊆ D,

i.e., D must pass through vertex y11. Since only (y11, a(x2
1)) is leaving y11, by repeating the

above argument we can conclude that we must also have Ev
x2
1
⊆ D, etc., finally arriving to

Ev
x

o1
1

⊆ D, i.e., that D includes u2 as a vertex. Repeating the same argument, we can prove

by induction that for all indices j = 1, ..., n, if Ev
x1

j
⊆ D, then we must have Ev

xk
j
⊆ D for all

k = 1, ..., oj , and that if Ev
x̄1

j
⊆ D, then we must also have Ev

x̄k
j
⊆ D for all k = 1, ..., ōj . Let

us then define a truth assignment XD by

XD
j =

{

1 if Ev
x̄1

j
⊆ D,

0 if Ev
x1

j
⊆ D.

Furthermore, repeating a similar argument for vertices un, un+1, ..., un+m−1, un+m we can
also conclude that D must contain the set Ec

ℓi
for exactly one of the literals ℓi ∈ Ci, for each

clauses Ci of φ. Since D is a simple cycle in which no vertex a(ℓ) or b(ℓ) is repeated, we must
have that ℓi(X

D) = 1 for all i = 1, ...,m, i.e., that XD is indeed a satisfying assignment of
φ.

These observations prove the reverse direction of our main claim, and hence conclude the
proof of Theorem 1. �
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3 Proof of Theorem 2

We can repeat essentially the same proof as for the directed case, with the exception that we
define w(u0, um+n) = −1 now, and associate with every literal occurrence ℓ ∈ L a different
subgraph denoted by Eℓ: Let us associate now with ℓ ∈ L six nodes, a = a(ℓ), b = b(ℓ), c =
c(ℓ), d = d(ℓ), e = e(ℓ), and f = f(ℓ), and and the following 10 edges

Eℓ = {(a, b), (b, c), (c, d), (d, e), (e, f), (a, f), (a, p), (b, q), (d, r), (e, s)},

where nodes p = p(ℓ), q = q(ℓ), r = r(ℓ) and s = s(ℓ) are identified with the other nodes
of G, in the same way as in the previous proof. To simplify notation, we shall omit the
reference to ℓ, whenever it is clear from the context which literal occurrence we talk about.
The weights of the edges of Eℓ are defined as

w(a, p) = w(b, q) = w(d, r) = w(e, s) = 5
2
, and

w(a, b) = w(b, c) = w(c, d) = w(d, e) = w(e, f) = w(a, f) = −1.

p(l) q(l)

a(l) b(l)

f(l) c(l)

e(l) d(l)

r(l)s(l)

−1

−1

−1

−1

−1

−1

5/25/2

5/2 5/2

Figure 3: The undirected graph associated with literal occurrences.

Let us note that in each of these subgraphs there is a negative cycle (see Figure 3),
formed by the six edges Dℓ = {(a, b), (b, c), (c, d), (d, e), (e, f), (a, f)}. Let us denote by
X = {Dℓ | ℓ ∈ L} the collection of these negative cycles, and let F denote the family of all
negative cycles in G.

By an analogous proof as in the previous section, we can show that there exists a negative
cycle belonging to F \ X if and only if φ has a satisfying assignment. The key observation
in this case, the analogue of Lemma 1, is the following claim, which can easily be verified
e.g., by looking at Figure 3.

Lemma 2 For a simple cycle D of G not belonging to X and literal occurrence ℓ ∈ L we
have

w(D ∩ Eℓ) ∈ {0, 1, 2, 4}
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and it is equal to 0 only if D ∩ Eℓ is one of the following there sets: ∅,

Ev
ℓ = {(b, c), (c, d), (d, e), (e, f), (a, f), (a, p), (b, q)}, or

Ec
ℓ = {(a, b), (b, c), (c, d), (e, f), (a, f), (d, r), (e, s)}.

�
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V. Chvátal. Linear Programming. Freeman, San Francisco, CA, 1983.

S.A. Cook. The complexity of theorem proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

M.E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations
Research, 8:381–402, 1983.

M.E. Dyer and L.G. Proll. An algorithms for determining all extreme points of a convex
polytope. Mathematical Programming, 12:81–96, 1977.

T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related
problems. SIAM Journal on Computing, 24:1278–1304, 1995.

J. Farkas. Theorie der einfachen ungleichungen. Journal für die reine und angewandte
Mathematik, 124:1–27, 1901.

M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms, 21:618–628, 1996.

K. Fukuda, Th. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all
vertices and all faces of a convex polyhedron. CGTA, 8:1–12, 1997.

T. Gallai. Maximum-minimum sätze über graphen. Acta Mathematicae, Academiae Scien-
tiarum Hungaricae, 9:395–434, 1958.

J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities. ORSA
Journal on Computing, 2(1):61–63, 1990.

D.S. Johnson and F.P. Preparata. The densest hemisphere problem. Theoretical Computer
Science, 6:93–107, 1978.

R. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics,
23:309–311, 1978.

L. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl., 20:
191–194, 1979.



– 17 –

E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing, 9:
558–565, 1980.

L. Lovász. Combinatorial optimization: some problems and trends. DIMACS Technical
Report 92-53, Rutgers University, 1992.

T.H. Mattheiss. An algorithm for determining irrelevant constraints and all vertices in
systems of linear inequalities. Operations Research, 21:247–260, 1973.

T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double description method.
In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of Games, volume II,
pages 51–73, 1953.

M. E. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-Facet Incidences of
Polyhedra. Dissertation, TU Berlin, 2002.

J.S. Provan. Efficient enumeration of the vertices of polyhedra associated with network lp’s.
Mathematical Programming, 63(1):47–64, 1994. ISSN 0025-5610.

R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees. Networks, 5:237–252, 1975.

J. Ryan. IIS-hypergraphs. SIAM Journal on Discrete Mathematics, 9(4):643–653, 1996.

R. Seidel. Output-size sensitive algorithms for constructive problems in computational geom-
etry. Computer science, Cornell University, Ithaka, NY, 1986.

G. Swart. Finding the convex hull facet by facet. Journal of Algorithms, 6:17–48, 1985.

L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8:410–421, 1979.


