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Abstract

This paper proposes a new feature selec-
tion score for text classification. The value
that this score assigns to each feature has
an appealing Bayesian interpretation, being
the posterior probability of inclusion of the
feature in a model. We evaluate the per-
formance of the score, together with five
other feature selection scores that have been
prominent in the text categorization litera-
ture, using four classification algorithms and
two benchmark text datasets. We find that
the new score performs well although no one
score dominates all others.

1 Introduction

The text classification literature tends to focus on fea-
ture selection algorithms that compute a score inde-
pendently for each candidate feature. This is the so-
called filtering approach. The scores typically contrast
the counts of occurrences of words or other linguistic
artifacts in training documents that belong to the tar-
get class with the same counts for documents that do
not belong to the target class. Given a predefined
number of words to be selected, say d, one chooses the
d words with the highest score. Several score func-
tions exist (Section 3 provides definitions). Yang and
Pedersen (1997) show that Information Gain and x?2
statistics performed best among five different scores.
Forman (2003) provides evidence that these two scores
have correlated failures. Hence when choosing opti-
mal pairs of scores these two scores work poorly to-
gether. He introduced a new score, the Bi-Normal
Separation, that yields the best performance on the
greatest number of tasks among twelve feature selec-
tion scores. Mladenic and Grobelnik (1999) compare
eleven scores combined using a Naive Bayes classifier
and find that the Odds Ratio score performed best in
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the highest number of tasks.

In regression and classification problems in Statis-
tics, popular feature selection strategies depend on the
same algorithm that fits the models. This is the so-
called wrapper approach. For example, Best subset re-
gression finds for each k the best subset of size k based
on residual sum of squares. Leaps and bounds is an effi-
cient algorithm that finds the best set of features when
the number of predictors is no larger than about 40.
Miller (2002) provides an extensive discussion.

Barbieri and Berger (2004) in a Bayesian context
and under certain assumptions show that for selection
among normal linear models, the best model contains
those features which have overall posterior probabil-
ity greater than or equal to 1/2. Motivated by this
study we introduce a new feature selection score (PIP)
that evaluates the posterior probability of inclusion
of a given feature over all possible models, where the
models correspond to a set of features. Unlike typical
scores used for feature selection via filtering, the PIP
score does depend on a specific model. In this sense,
the new score straddles the filtering and wrapper ap-
proaches.

We present experiments that compare the new fea-
ture selection score with five other feature selection
scores that have been prominent in the studies men-
tioned above. We evaluate these feature selection
scores on two widely-used benchmark text classifica-
tion datasets, Reuters-21578 and 20-Newsgroups, with
four classification algorithms. Following previous stud-
ies, we measure the performance of the classification
algorithms using the F; measure.

We have organized this paper as follows. Section 2
briefly presents the theory that motivates the new fea-
ture selection score. Section 3 describes the various
feature selection scores we consider, both the new score
and the various existing competitors. In Section 4 we
mention the classification algorithms that we use to
compare the feature selection scores. The experimen-



tal settings and experimental results are in Section 5.
Section 6 has the conclusions.

2 Motivation for the new feature
selection score (PIP)

In this section we present the theory behind the me-
dian probability model introduced by Barbieri and
Berger (2004) that motivates our work. Consider the
usual normal linear model:

y=X0B+e (1)

where y is the n x 1 vector of observed values of the
response variable, X is the n x k& (k < n) full rank
design matrix of covariates, and 3 is a k£ x 1 vector of
unknown coefficients. Assume that the coordinates of
the random error vector are independent, each with a
normal distribution with mean 0 and variance o2.

We call the model in equation (1) the full model and
consider selecting a model from among all submodels
of the form M, : y = X;8, + €, where | = (l1,...,1}) is
the model index, [; being either 1 or 0 as covariate z;
is in or out of the model; X; contains the columns of X
corresponding to the nonzero coordinates of /; and 3,
is the corresponding vector of regression coeflicients.

For a future vector of covariates z* = (z7,...,z}), we
assume that the loss in predicting y* = z*3 + € by g*
is the squared error loss L(§*,4*) = (§* — y*)%.

Assume also that covariates * arise according to some
distribution and that the k& x k& matrix:

Q — E(:E*TIE*), (2)

exists and is positive definite.

The optimal predictor of y*, under squared error loss
and when the model M, is true, is given by

gl* - I*HlBla (3)

where ,Bl is the posterior mean of 3, with respect to
m1(8;, 0ly), the posterior distribution of the unknown
parameters in M;. H,; is the matrix such that xH; is
the subvector of = corresponding to the nonzero coor-
dinates of [, i.e., the covariate vector corresponding to
model M.

When one must select a single model, under the
Bayesian approach, a common perception exists that
the optimal predictive model is the model with the
hightest posterior probability. However, this is not

necessarily the case. For selection among normal lin-
ear models, the optimal predictive model is often the
median probability model, which we define in what
follows.

Definition 1 The posterior inclusion probability for
variable z; is

bi = Z P(Mly)

1:l;=1

Definition 2 If it exists, the median probability
model, M-, is the model that contains all those vari-
ables whose posterior inclusion probability is at least
1/2. More precisely, [* is such that

i 7] 0 otherwise

Theorem Suppose we select a single model to predict
a future observation. If:

i) @ (as in (2)) is diagonal with diagonal elements
q; > 0, and

ii) B, = H;3 where (3, is defined in (3) (i.e. that the
posterior mean of 3, correspond to the relevant coor-
dinates of the posterior mean in the full model),

then the median probability model is the best predic-
tive model.

The results in Barbieri and Berger (2004) do not di-
rectly apply to the models that we consider. We do
not consider normal linear models and furthermore @
is rarely a diagonal matrix in practice. Nonetheless,
the remarkable results in Barbieri and Berger (2004)
do suggest that the median probability model certainly
warrants consideration even in situations where the
conditions do not strictly apply. In what follows we
present a novel algorithm for computing the posterior
inclusion probability for different text categorization
models.

3 Feature Selection Scores

Feature selection, or word selection in the experiments
of this study, uses a score to select the best d words
from all words that appear in the training set. Be-
fore we list the feature selection scores that we study,
we introduce some notation. Table 1 show the basic
statistics for a single word and a single category (or
class).

Nk - N° of documents in class ¢; with word w.

niw - n° of documents in class ¢; without word w.

(U of documents not in class ¢; with word w.
n® of documents not in class ¢; without word w.
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Table 1: Two-way contingency table of word w and
category cg

ny, : total n° of documents in class cj.

ny : total n° of documents that are not in class cy.
Ny : total n® of documents with word w.

n4 : total n® of documents without word w.

n : total n° of documents.

3.1 Posterior Inclusion Probability (PIP)
under a Bernoulli distribution

We introduce a new feature selection score which is
motivated by the median probability model. We first
consider the binary naive Bayes model. Section 3.2
considers a naive Bayes model with Poisson distribu-
tions for word frequency. This score for feature or word
w and class ¢ is defined as

low
PIP(w,cp) = # (4)

where

BNk + ks NewBrw)

lOU}k - B(akwa ﬂkw)
B(”Ew + O‘va ”Eﬁ + ﬁzw)
B(O‘vaﬁiw)
lwk _ B(nw"_awanﬁ"f'ﬂw)
B(aw, Buw)

B(a,b) is the Beta function which is defined as
B(aab) = Fp((alzig)))a and apw, Ak, Cws Brws Brw, Buw
are constants set by the practitioner. In our exper-
iments we set them to be a,, = 0.2, 8, = 2/25 for
all words w, ay, = 0.1, agg = 0.1, Bry = 1/25 and
Brw = 1/25 for all categories £ and words w. These
settings correspond to rather diffuse priors.

We explicate this score on the context of a two-
candidate-word model. In general, with d candidate
words, there are 2¢ models corresponding to allpossi-
ble subsets of the words. For two words, Figure 1 we
show a graphical representation of the four possible
models. The corresponding likelihoods for each model
are given by

M(171) : HZ PT(wilawiZaCiwlcaG2c) = Hz’B(wilaakl)
XB(wil,Hzl)B(wiz,sz)B(wig,é)E)Pr(ci\ﬂk)

©
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Figure 1: Graphical model representation of the four
models with two words, w; and ws.

M0y = [I; Pr(wii, wiz, ¢ilbhc, 02) = [, B(wii, Ox1)
xB(wil,HEI)B(wig,92)B(wi2,02)Pr(ci\9k)

My : I1; Pr(wii, wiz, cil1,02:) = [1; B(wii, 61)
XB(U)“,01)3(’(1)7;2,9192)3(’(1)7;2,HEQ)PT’(C”G]Q)

M(070) : H7 Pr(wi, wiz, ci|01,02) = HiB(wi1,91)
xB(wil,91)B(wi2,92)8(wi2,02)Pr(ci\9k)

where w;; takes the value 1 if document ¢ contains
word j and 0 otherwise, ¢; is 1 if document i is in
category k otherwise is 0, Pr(c;|0x) = B(ci,0;) and
B(w,0) = §¥(1—0)' % denotes a Bernoulli probability
distribution.

Therefore, in model M(; ;) the presence or absence of
both words in a given docuement depends on the docu-
ment class. 01 corresponds to the proportion of doc-
uments in category c; with word w; and 67, to the
proportion of documents not in category c; with word
wi. In model M, ¢) only word w; depends on the
category of the document and 65 correspond to the
proportion of documents with word wy regardless of
the category associated with them. 6 is the propor-
tion of documents in category ¢, and Pr(c;|0) is the
probability that document d; is in category cy.

We assume the following prior probability distribu-
tions for the parameters,

Okw ~ Beta(akwaﬂkw)
Ozw ~ Beta(azw, ﬂEw)
O ~ Beta(awaﬂw)

0x ~ Beta(ax, Bi)

where Beta(a,3) denotes a Beta distribution, i.e.
Pr(8la,B) = ﬁ@o‘*l(l -0 ke {l,..,m}and
w e {1,...,d}.

Then the marginal likelihoods for each of the four mod-
els above are:

Pr(data|M(171)) = l() X lOlk X logk
Pr(data|M(170)) =lp X lo1x X log
Pr(data|M(071)) = lo X llk X l02k
Pr(data|M(070)) = lo X llk X lgk

where lg,r and [,p are defined above for w €
{1, 2, ceey d} and lg = fO Hl Pr(ci|9k)Pr(9k|ak, ﬂk)dék
is the marginal probability for the category of the doc-
uments.



The overall posterior probability that a feature is in-
cluded in a model, its posterior inclusion probability
(PIP), is defined as

PIP(w,c;) = Y Pr(M|data) (5)

=1

where [ is a vector of length the number of features
and the jth component takes the value 1 if the jth
feature is included in model M, otherwise it is 0. It
is straightforward to show that PIP(w,cy) in equa-
tion (4) is equivalent to PIP(w,c;) in equation (5),
if we assume that the prior probability density for the
models is uniform, e.g. Pr(M;) o 1.

In the example above, the posterior inclusion proba-
bility for word w; is given by,

Pr(wilcy) = Pr(Mg yldata) + Pr(M g)|data)

lo1k
lovk + lig

To get a single “bag of words” for all categories we
compute the weighted average of PIP(w,cg) over all
categories.

PIP(w) =Y _ Pr(c;)PIP(w,cx)
k

We note that Dash and Cooper (2002) present sim-
ilar manipulations of the naive Bayes model but for
model averaging purposes rather than finding the me-
dian probability model.

3.2 Posterior Inclusion Probability (PIPp)
under Poisson distributions

A gernalization of the binary naive Bayes model as-
sumes class-conditional Poisson distributions for the
word frequencies in a document. As before, assume
that the probability distribution for a word in a doc-
ument might or might not depend on the category of
the document. More precisely, if the distribution for
word w depends on the category c; of the document
we have,

7)\;“‘,)\11;

Pr(wle=1) = 67"“"
w!

ef)‘ﬁw)\y

Pr(wle=0) = ——* kw
w!

where w denotes a specific word and the number of
times that word appears in the document and Az,
(Mg,,) represents the expected number of times that

word w appears in documents in category c; (cz). If
the distribution for word w does not depend on the

category of the document then we have,

—Aw W
e A

Pr(w) = ”

where ), represents the expected number of times w
appears in a document regardless of the category of
the document.

Assume the following conjugate prior probability den-
sities for the parameters,

Akw ~
P ~

kw

Aw

Gamma(Qgw, Brw)

Gamma(og,,, Bz.,)

2

Gamma(ay, Bw)

where gy, Brw, 0%, B5,, @ws Bw are hyperparameters
to be set by the practitioner.

Now, as before, the posterior inclusion probability for
poisson distributions (PIPp) is given by

lOwk
PIPp(w,c) = ————
p( k) lOwk + lwk
where
I F(Nkw +akw) F(NEw-i-aEw)
Oowk = Chw o
(o ) B T(ag, )80
><( ﬂkw )nkw+akw( 5510 )”E1u+aEw
N Brw + 1 nzﬁzw +1
l F(Nw + Oéw) ﬂw )nw+aw
wk T(aw) Bun+1 v
This time, Ng.,, N, , N,, denote:

kw?

Npyw: n° of times word w appears in documents in
class cy.
Nz, n° of times word w appears in documents not in
class cy,.
N,,: total n° of times that word w appears in all doc-

uments.

As before, to get a single “bag of words” for
all categories we compute the weighted average of
PIPp(w,cyi) over all categories.

PIPp(w) = Z Pr(cg)PIPp(w,cy)
k

3.3 Information Gain (IG)

Information gain is a popular score for feature selec-
tion in the field of machine learning. In particular it
is used in the C4.5 decision tree inductive algorithm.



Yang and Pedersen (1997) compare five different fea-
ture selection scores on 2 datasets and show that In-
formation Gain is among the two most effective ones.
The information gain of word w is defined to be:

m

- Z Pr(ck) log Pr(cy)

k=1

IG(w) =

+Pr(w Z r(ck|w) log Pr(ci|w)

Ms i

+Pr(w) Pr(ci|w) log Pr(ci|w)

E]
Il
—_

where {cj;}1; denote the set of categories and w the
abscence of word w. It measures the decrease in en-
tropy when the feature is present versus when the fea-
ture is absent.

3.4 Bi-Normal Separation (BNS)
Forman (2003) defines Bi-Normal Separation as:

1, Nkw 1, "%
=971 (—=) — @7} ()
ng ’I’Lk

BNS(w,cg)

where @ is the standard normal distribution and !
its corresponding inverse. ®1(0) is set to be equal to
0.0005 to avoid numerical problems following Forman
(2003). By averaging over all categories, we get a score
that selects a single set of words for all categories.

w 1,z
BNS(w ZPrck N ]

®
3.5 Chi-Square

The chi-square feature selection score, x2(w, cj), mea-
sures the dependence between word w and category cy.
If word w and category c; are independent x2(w, cy) is
equal to zero. When we select a different set of words
for each category we utilise the following score,

(NN — 17, k)

NNy, TLE’I’LE

Xz(wa Ck) =

Again, by averaging over all categories we get a score
for selecting a single set of words for all categories.

= ZPr(ck)xz(w,ck).
k=1

3.6 0Odds Ratio

The Odds Ratio measures the odds of word w occur-
ing in documents in category c; divided by the odds

of word w not occuring in documents in category cg.
Mladenic and Grobelnik (1999) find this to be the best
score among eleven scores for a Naive Bayes classifier.
For category ¢, and word w the Odds Ratio (OR) is
given by,

Ngw+0.1 /Npz+0.1
nE+0.1 nk+0 1
ny +0.1 ——+0.1
ne —+0.1 ne +0 1

OR(w,ci) =

where we added the constant 0.1 to avoid numerical
problems. By averaging over all categories we get,

OR(w) = ZPT(Ck)OddSRatiO(’w,Ck).
k

3.7 Word Frequency

This is the simplest of the feature selection scores. In
the study of Yang and Pedersen (1997) they show that
word frequency is the third best after information gain
and x2. They also point out that there is strong cor-
relation between these two scores and word frequency.
For each category c;, word frequency for word w, is the
number of documents in ¢, that contain word w, i.e.
WF(w,cr) = Ngw.

Averaging over all categories we get a score for each

w,

WF(w ZPT c)WF(w, cy)
k

E Pr(cg)ngw.

4 Classification Algorithms

To determine the performance of the different fea-
ture selection scores, the classification algorithms that
we consider are the Multinomial, Poisson and Binary
Naive Bayes classifiers ( McCallum and Nigam, 1998,
Lewis, 1998, and Eyheramendy et al, 2003) and the hi-
erarchical probit classifier of Genkin et al (2003). The
naive Bayes models are generative models (i.e., models
for Pr(z,y)) while the probit is a discriminative model
(i-e., a model for Pr(y|z)). Many text classification
applications continue to utilize Naive Bayes models.
However, discriminative models such as support vector
machines and the hierarchical probit classifer typically
provide superior predictive performance. Genkin et al.
(2003) provide detailed experimental results.

5 Experimental Settings and Results

Before we start the analysis we remove common non-
informative words taken from a standard stopword list
of 571 words and we remove words that appear less
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Figure 2: Curves of performance for the multinomial
model for different number of words measure by macro
F; and micro F; (which correspond to the bottom and
top set of curves resp.).

than three times in the training documents, justify-
ing this with the fact that they are unlikely to appear
in testing documents. This eliminates 8,752 words in
the Reuters dataset (38% of all words in training doc-
uments) and 47,118 words in the Newsgroups dataset
(29% of all words in training documents). Words ap-
pear on average in 1.41 documents in the Reuters
dataset and in 1.55 documents in the Newsgroups
dataset.

5.1 Datasets

The 20-Newsgroups dataset contains 19,997 articles
divided almost evenly into 20 disjoint categories.
The categories topics are related to computers,
politics, religion, sport and science. We split the
dataset randomly into 75% for training and 25% for
testing. We took this version of the dataset from
http://www.ai.mit.edu/people/jrennie/20Newsgroups/.
The other dataset comprises a subset of the ModApte
version of the Reuters—21,578 collection, where each
document has assigned at least one topic label (or
category) and this topic label belongs to any of
the 10 most populous categories - earn, acq, grain,
wheat, crude, trade, interest, corn, ship, money-fx.
It contains 6,775 documents in the training set and
2,258 in the testing set.

macro F
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Figure 3: Curves of performance for the probit model
for different number of words measure by macro and
micro F; (top and bottom sets of curves resp.) for the
Reuters dataset.

5.2 Experimental Results

In these experiments we compare seven feature selec-
tion scores, on two benchmark datasets, Reuters-21578
and Newgroups (see subsection 5.1), under four classi-
fication algorithms (see section 4). We report so-called
F; performance measures. Fj is the average of preci-
sion and recall. See, for example, Genkin et al. (2003)
for details.

We compare the performance of the classifiers for dif-
ferent numbers of words and vary the number of words
from 10 to 1000. For larger number of words the clas-
sifiers tend to perform somewhat more similarly, and
the effect of chosing the words using a different feature
selection procedure is less noticeable.

Figure 2, 3, 4 and 5 show the micro and macro av-
eraged F; measure for each of the feature selection
scores as we vary the number of features to select for
the four classification algorithms - multinomial, pro-
bit, poisson and binary respectively. In order to have
both sets of curves (the curves with the micro F; and
macro F; measures) in the same graph we move them
apart. The y — azes for the micro F; (macro F;) mea-
sure correspond to the y —azes on the left (right). The
reader will find these figures easier to read in a color
rather than black and white rendition.

We noticed that PIP gives, in general, high values to
all very frequent words. This lead us to consider a
second version of PIP and PIPp, PIPIf and PIPplf

macro F
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Figure 4: Curves of performance for the poisson model
for different number of words measure by micro F; and
macro F; (top and bottom sets of curves resp.) for the
Reuters dataset.

respectively, which correspond to the same score but
with the words that appear too frequently removed.
Specifically, we remove words that appear more than
2000 times in the Reuters dataset (that accounts for 15
words) and more than 3000 times in the Newsgroups
dataset (that accounts for 36 words).

Reuters. Like the results of Forman (2003), if for
scalability reasons one is limited to a small number of
features (< 50) the best available metrics are IG and
x2 as Figures 2 — 5 show. For larger number of fea-
tures (> 50), Figure 2 shows that PIPplf and PIPIf
are the best scores for the mutinomial classifier. Fig-
ure 4 and 5 show the performance for the poisson and
binary classifiers respectively. PIPp followed by BNS
achive the best performance in the Poisson classifier
and PIPplf achieves the best performance in the bi-
nary classifier. WF performs poorly compare to the
other scores in all the classifiers, having the best per-
formance with the poisson.

Newsgroups. x?2 followed by BNS, IG and PIP are
the best performing measures in the probit classifier.
x? is also the best one in multinomial model followed
by BNS and in the binary classifier with the macro Fj
measure. OR performs best in the poisson classifier.
PIPp is best in the binary classifier under the micro Fy
measure. WF performs poorly compare to the other
scores in all classifiers. Because of lack of space we do
not show graphical display of the performance of the
classifiers in the Newsgroups dataset.
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Figure 5: Curves of performance for the binary naive
Bayes model for different number of words measure by
micro F; and macro F; (top and bottom sets of curves
resp.) for the Reuters dataset.

Table 2 shows the performance of the four classifiers in
the two datasets with 1,000 features. For the Reuters
dataset, BNS provides the best performance for three
of models. However, a PIP score ties BNS in two cases,
and comes close in a third. PIPIf provides the best
performance in one case. For the newsgroup data, OR
and BNS are best.

Table 3 shows the predictive performance with 200 fea-
tures. Again, PIP scores do well on Reuters and less
well on Newsgroups. The chi-square score provides the
best performance in two cases.

6 Conclusion

In this study we introduced a new feature selection
score, PIP. The value that this score assigns to each
word has an appealing Bayesian interpretation, being
the posterior probability of inclusion of the word in
a model. Such models assume a probability distribu-
tion on the words of the documents. We consider two
probability distributions, Bernoulli and Poisson. The
former takes into account the presence or absence of
words in the documents, and the latter, the number
of times each word appears in the documents. Future
research could consider alternative PIP socres corre-
sponding to different probabilistic models.

x2, BNS, and PIP are the best performing scores.
Still, feature selection scores and classification algo-

macro F



1G |PIP|X2 |OR |BNS|WF|PIPp|PIPlf|PIPplf
Reuters-21578 dataset

probit  [0.91(0.91]0.91(0.76 |0.92]0.90| 0.91| 0.90| 0.91

poisNB [0.69(0.72|0.70(0.73 |0.76|0.68/0.76| 0.70| 0.74

multiNB|0.84(0.84/0.84(0.73 |0.84 |0.81| 0.83| 0.86| 0.85

binNB |0.79]0.82(0.80(0.69 |0.83|0.76/0.83| 0.81| 0.82

. 20-Newsgroup dataset Barbieri, M.M. and Berger, J.O. (2004). Optimal pre-
probit 10.75/0.74/0.77/0.63 |0.76/0.64| 0.72 0.74| 0.72| gjctive model selection. Annals of Statistics, 32, 870—
poisNB [0.77(0.770.81/0.93(0.80 [0.68| 0.85| 0.77 0.85| gg7.

multiNBJ0.58(0.59|0.62|0.50 [0.64[0.61| 0.55] 0.62| 0.58

binNB  [0.55(0.52(0.58|0.59(0.56 [0.46| 0.57| 0.52| 0.57| Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian
Theory. New York: Wiley.

Dash, D. and Cooper, G.F. (2002). Exact model aver-
aging with naive Bayesian classifiers. In: Proceedings
of the Nineteenth International Conference on Ma-
chine Learning, 91-98.

Eyheramendy, S., Lewis, D.D. and Madigan, D.

IG [PIP[x* [OR |BNS|WF|PIP,|PIP;#|[PIP ;| (2003). On the naive Bayes classifiers for text cate-

Reuters-21578 dataset gorization. In Proceedings of the ninth international

probit [0.92]0.90[0.93|0.62 |0.87 |0.86| 0.89| 0.90| 0.87| workshop on Artificial Intelligence and Statistics, eds,
poisNB [0.74/0.74/0.77 0.62 |0.78|0.73|0.78| 0.71| 0.76/ C.M. Bishop and B.J. Frey.

multiNBJ|0.78]0.77|0.80 [0.58 |0.78 |0.68| 0.78| 0.82| 0.81
. Forman, G. (2003). An extensive Empirical Study
binNB_10.77/0.76]0.80 |0.670.77 0.65) 0.77) 0.78] 0.81 of Feature Selection Metrics for Text Classification.

_ 20-Newsgroup dataset Journal of Machine Learning Research
probit [0.66|0.65|0.70|0.53 |0.66 |0.46| 0.59 0.59| 0.53
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