
A novel feature selection score for text categorization
Susana EyheramendyDepartment of Statistics1 South Parks RoadOxford UniversityOxford, OX1 3TG David MadiganDepartment of Statistics501 Hill CenterRutgers UniversityPiscataway, NJ 08855AbstractThis paper proposes a new feature selec-tion score for text classi�cation. The valuethat this score assigns to each feature hasan appealing Bayesian interpretation, beingthe posterior probability of inclusion of thefeature in a model. We evaluate the per-formance of the score, together with �veother feature selection scores that have beenprominent in the text categorization litera-ture, using four classi�cation algorithms andtwo benchmark text datasets. We �nd thatthe new score performs well although no onescore dominates all others.1 IntroductionThe text classi�cation literature tends to focus on fea-ture selection algorithms that compute a score inde-pendently for each candidate feature. This is the so-called �ltering approach. The scores typically contrastthe counts of occurrences of words or other linguisticartifacts in training documents that belong to the tar-get class with the same counts for documents that donot belong to the target class. Given a prede�nednumber of words to be selected, say d, one chooses thed words with the highest score. Several score func-tions exist (Section 3 provides de�nitions). Yang andPedersen (1997) show that Information Gain and �2statistics performed best among �ve di�erent scores.Forman (2003) provides evidence that these two scoreshave correlated failures. Hence when choosing opti-mal pairs of scores these two scores work poorly to-gether. He introduced a new score, the Bi-NormalSeparation, that yields the best performance on thegreatest number of tasks among twelve feature selec-tion scores. Mladenic and Grobelnik (1999) compareeleven scores combined using a Naive Bayes classi�erand �nd that the Odds Ratio score performed best in

the highest number of tasks.In regression and classi�cation problems in Statis-tics, popular feature selection strategies depend on thesame algorithm that �ts the models. This is the so-called wrapper approach. For example, Best subset re-gression �nds for each k the best subset of size k basedon residual sum of squares. Leaps and bounds is an e�-cient algorithm that �nds the best set of features whenthe number of predictors is no larger than about 40.Miller (2002) provides an extensive discussion.Barbieri and Berger (2004) in a Bayesian contextand under certain assumptions show that for selectionamong normal linear models, the best model containsthose features which have overall posterior probabil-ity greater than or equal to 1=2. Motivated by thisstudy we introduce a new feature selection score (PIP)that evaluates the posterior probability of inclusionof a given feature over all possible models, where themodels correspond to a set of features. Unlike typicalscores used for feature selection via �ltering, the PIPscore does depend on a speci�c model. In this sense,the new score straddles the �ltering and wrapper ap-proaches.We present experiments that compare the new fea-ture selection score with �ve other feature selectionscores that have been prominent in the studies men-tioned above. We evaluate these feature selectionscores on two widely-used benchmark text classi�ca-tion datasets, Reuters-21578 and 20-Newsgroups, withfour classi�cation algorithms. Following previous stud-ies, we measure the performance of the classi�cationalgorithms using the F1 measure.We have organized this paper as follows. Section 2brie
y presents the theory that motivates the new fea-ture selection score. Section 3 describes the variousfeature selection scores we consider, both the new scoreand the various existing competitors. In Section 4 wemention the classi�cation algorithms that we use tocompare the feature selection scores. The experimen-



tal settings and experimental results are in Section 5.Section 6 has the conclusions.2 Motivation for the new featureselection score (PIP)In this section we present the theory behind the me-dian probability model introduced by Barbieri andBerger (2004) that motivates our work. Consider theusual normal linear model:y = X� + � (1)where y is the n � 1 vector of observed values of theresponse variable, X is the n � k (k < n) full rankdesign matrix of covariates, and � is a k � 1 vector ofunknown coe�cients. Assume that the coordinates ofthe random error vector are independent, each with anormal distribution with mean 0 and variance �2.We call the model in equation (1) the full model andconsider selecting a model from among all submodelsof the form Ml : y = Xl�l + �, where l = (l1; :::; lk) isthe model index, li being either 1 or 0 as covariate xiis in or out of the model; Xl contains the columns of Xcorresponding to the nonzero coordinates of l; and �lis the corresponding vector of regression coe�cients.For a future vector of covariates x� = (x�1; :::; x�k), weassume that the loss in predicting y� = x�� + � by ŷ�is the squared error loss L(ŷ�; y�) = (ŷ� � y�)2:Assume also that covariates x� arise according to somedistribution and that the k � k matrix:Q = E(x�Tx�); (2)exists and is positive de�nite.The optimal predictor of y�, under squared error lossand when the model Ml is true, is given byŷ�l = x�Hl~�l; (3)where ~�l is the posterior mean of �l with respect to�l(�l; �jy), the posterior distribution of the unknownparameters in Ml. Hl is the matrix such that xHl isthe subvector of x corresponding to the nonzero coor-dinates of l, i.e., the covariate vector corresponding tomodel Ml.When one must select a single model, under theBayesian approach, a common perception exists thatthe optimal predictive model is the model with thehightest posterior probability. However, this is not

necessarily the case. For selection among normal lin-ear models, the optimal predictive model is often themedian probability model, which we de�ne in whatfollows.De�nition 1 The posterior inclusion probability forvariable xi is pi = Xl:li=1P (Mljy)De�nition 2 If it exists, the median probabilitymodel, Ml� , is the model that contains all those vari-ables whose posterior inclusion probability is at least1=2. More precisely, l� is such thatl�i = � 1 if pi � 120 otherwiseTheorem Suppose we select a single model to predicta future observation. If:i) Q (as in (2)) is diagonal with diagonal elementsqi > 0, andii) ~�l = Hl~� where ~�l is de�ned in (3) (i.e. that theposterior mean of �l correspond to the relevant coor-dinates of the posterior mean in the full model),then the median probability model is the best predic-tive model.The results in Barbieri and Berger (2004) do not di-rectly apply to the models that we consider. We donot consider normal linear models and furthermore Qis rarely a diagonal matrix in practice. Nonetheless,the remarkable results in Barbieri and Berger (2004)do suggest that the median probabilitymodel certainlywarrants consideration even in situations where theconditions do not strictly apply. In what follows wepresent a novel algorithm for computing the posteriorinclusion probability for di�erent text categorizationmodels.3 Feature Selection ScoresFeature selection, or word selection in the experimentsof this study, uses a score to select the best d wordsfrom all words that appear in the training set. Be-fore we list the feature selection scores that we study,we introduce some notation. Table 1 show the basicstatistics for a single word and a single category (orclass).nkw : n� of documents in class ck with word w.nkw : n� of documents in class ck without word w.nkw : n� of documents not in class ck with word w.nkw : n� of documents not in class ck without word w.



ck ckw nkw nkw nww nkw nkw nwnk nk nTable 1: Two-way contingency table of word w andcategory cknk : total n� of documents in class ck.nk : total n� of documents that are not in class ck.nw : total n� of documents with word w.nw : total n� of documents without word w.n : total n� of documents.3.1 Posterior Inclusion Probability (PIP)under a Bernoulli distributionWe introduce a new feature selection score which ismotivated by the median probability model. We �rstconsider the binary naive Bayes model. Section 3:2considers a naive Bayes model with Poisson distribu-tions for word frequency. This score for feature or wordw and class ck is de�ned asPIP (w; ck) = l0wkl0wk + lwk (4)where l0wk = B(nkw + �kw; nkw�kw)B(�kw ; �kw)�B(nkw + �kw; nkw + �kw)B(�kw; �kw)lwk = B(nw + �w; nw + �w)B(�w; �w)B(a; b) is the Beta function which is de�ned asB(a; b) = �(a)�(b)�(a+b) , and �kw , �kw , �w, �kw, �kw , �ware constants set by the practitioner. In our exper-iments we set them to be �w = 0:2, �w = 2=25 forall words w, �kw = 0:1, �kw = 0:1, �kw = 1=25 and�kw = 1=25 for all categories k and words w. Thesesettings correspond to rather di�use priors.We explicate this score on the context of a two-candidate-word model. In general, with d candidatewords, there are 2d models corresponding to allpossi-ble subsets of the words. For two words, Figure 1 weshow a graphical representation of the four possiblemodels. The corresponding likelihoods for each modelare given byM(1;1) :Qi Pr(wi1; wi2; cij�1c; �2c) =Qi B(wi1; �k1)�B(wi1; �k1)B(wi2; �k2)B(wi2; �k2)Pr(cij�k)
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Figure 1: Graphical model representation of the fourmodels with two words, w1 and w2.M(1;0) :Qi Pr(wi1; wi2; cij�1c; �2) =Qi B(wi1; �k1)�B(wi1; �k1)B(wi2; �2)B(wi2; �2)Pr(cij�k)M(0;1) :Qi Pr(wi1; wi2; cij�1; �2c) =Qi B(wi1; �1)�B(wi1; �1)B(wi2; �k2)B(wi2; �k2)Pr(cij�k)M(0;0) :Qi Pr(wi1; wi2; cij�1; �2) =Qi B(wi1; �1)�B(wi1; �1)B(wi2; �2)B(wi2; �2)Pr(cij�k)where wij takes the value 1 if document i containsword j and 0 otherwise, ci is 1 if document i is incategory k otherwise is 0, Pr(cij�k) = B(ci; �k) andB(w; �) = �w(1��)1�w denotes a Bernoulli probabilitydistribution.Therefore, in model M(1;1) the presence or absence ofboth words in a given docuement depends on the docu-ment class. �k1 corresponds to the proportion of doc-uments in category ck with word w1 and �k1 to theproportion of documents not in category ck with wordw1. In model M(1;0) only word w1 depends on thecategory of the document and �2 correspond to theproportion of documents with word w2 regardless ofthe category associated with them. �k is the propor-tion of documents in category ck and Pr(cij�k) is theprobability that document di is in category ck.We assume the following prior probability distribu-tions for the parameters,�kw � Beta(�kw ; �kw)�kw � Beta(�kw; �kw)�w � Beta(�w; �w)�k � Beta(�k; �k)where Beta(�; �) denotes a Beta distribution, i.e.Pr(�j�; �) = 1B(�;�)���1(1� �)��1, k 2 f1; :::;mg andw 2 f1; :::; dg.Then the marginal likelihoods for each of the four mod-els above are:Pr(datajM(1;1)) = l0 � l01k � l02kPr(datajM(1;0)) = l0 � l01k � l2kPr(datajM(0;1)) = l0 � l1k � l02kPr(datajM(0;0)) = l0 � l1k � l2kwhere l0wk and lwk are de�ned above for w 2f1; 2; :::; dg and l0 = R 10 Qi Pr(cij�k)Pr(�k j�k; �k)d�kis the marginal probability for the category of the doc-uments.



The overall posterior probability that a feature is in-cluded in a model, its posterior inclusion probability(PIP), is de�ned asPIP (w; ck) = Xl:lj=1Pr(Mljdata) (5)where l is a vector of length the number of featuresand the jth component takes the value 1 if the jthfeature is included in model Ml, otherwise it is 0. Itis straightforward to show that PIP (w; ck) in equa-tion (4) is equivalent to PIP (w; ck) in equation (5),if we assume that the prior probability density for themodels is uniform, e.g. Pr(Ml) / 1.In the example above, the posterior inclusion proba-bility for word w1 is given by,Pr(w1jck) = Pr(M(1;1)jdata) + Pr(M(1;0)jdata)= l01kl01k + l1kTo get a single \bag of words" for all categories wecompute the weighted average of PIP (w; ck) over allcategories.PIP (w) =Xk Pr(ck)PIP (w; ck)We note that Dash and Cooper (2002) present sim-ilar manipulations of the naive Bayes model but formodel averaging purposes rather than �nding the me-dian probability model.3.2 Posterior Inclusion Probability (PIPp)under Poisson distributionsA gernalization of the binary naive Bayes model as-sumes class-conditional Poisson distributions for theword frequencies in a document. As before, assumethat the probability distribution for a word in a doc-ument might or might not depend on the category ofthe document. More precisely, if the distribution forword w depends on the category ck of the documentwe have, Pr(wjc = 1) = e��kw�wkww!Pr(wjc = 0) = e��kw�wkww!where w denotes a speci�c word and the number oftimes that word appears in the document and �kw(�kw) represents the expected number of times that

word w appears in documents in category ck (ck). Ifthe distribution for word w does not depend on thecategory of the document then we have,Pr(w) = e��w�www!where �w represents the expected number of times wappears in a document regardless of the category ofthe document.Assume the following conjugate prior probability den-sities for the parameters,�kw � Gamma(�kw ; �kw)�kw � Gamma(�kw; �kw)�w � Gamma(�w; �w)where �kw ; �kw; �kw; �kw; �w; �w are hyperparametersto be set by the practitioner.Now, as before, the posterior inclusion probability forpoisson distributions (PIPp) is given byPIPp(w; ck) = l0wkl0wk + lwkwherel0wk = �(Nkw + �kw)�(�kw)��kwkw �(Nkw + �kw)�(�kw)��kwkw�( �kwnk�kw + 1)nkw+�kw ( �kwnk�kw + 1)nkw+�kwlwk = �(Nw + �w)�(�w) ( �w�wn+ 1)nw+�w 1��wwThis time, Nkw; Nkw; Nw denote:Nkw: n� of times word w appears in documents inclass ck.Nkw: n� of times word w appears in documents not inclass ck.Nw: total n� of times that word w appears in all doc-uments.As before, to get a single \bag of words" forall categories we compute the weighted average ofPIPp(w; ck) over all categories.PIPp(w) =Xk Pr(ck)PIPp(w; ck)3.3 Information Gain (IG)Information gain is a popular score for feature selec-tion in the �eld of machine learning. In particular itis used in the C4.5 decision tree inductive algorithm.



Yang and Pedersen (1997) compare �ve di�erent fea-ture selection scores on 2 datasets and show that In-formation Gain is among the two most e�ective ones.The information gain of word w is de�ned to be:IG(w) = � mXk=1Pr(ck) logPr(ck)+Pr(w) mXk=1Pr(ck jw) logPr(ck jw)+Pr(w) mXk=1Pr(ck jw) logPr(ck jw)where fckgmk=1 denote the set of categories and w theabscence of word w. It measures the decrease in en-tropy when the feature is present versus when the fea-ture is absent.3.4 Bi-Normal Separation (BNS)Forman (2003) de�nes Bi-Normal Separation as:BNS(w; ck) = j��1(nkwnk )� ��1(nkwnk )jwhere � is the standard normal distribution and ��1its corresponding inverse. ��1(0) is set to be equal to0:0005 to avoid numerical problems following Forman(2003). By averaging over all categories, we get a scorethat selects a single set of words for all categories.BNS(w) = mXk=1Pr(ck)j��1(nkwnk )���1(nkwnk )j3.5 Chi-SquareThe chi-square feature selection score, �2(w; ck), mea-sures the dependence between word w and category ck.If word w and category ck are independent �2(w; ck) isequal to zero. When we select a di�erent set of wordsfor each category we utilise the following score,�2(w; ck) = n(nkwnkw � nkwnkw)2nknwnknw :Again, by averaging over all categories we get a scorefor selecting a single set of words for all categories.�2(w) = mXk=1Pr(ck)�2(w; ck):3.6 Odds RatioThe Odds Ratio measures the odds of word w occur-ing in documents in category ck divided by the odds

of word w not occuring in documents in category ck.Mladenic and Grobelnik (1999) �nd this to be the bestscore among eleven scores for a Naive Bayes classi�er.For category ck and word w the Odds Ratio (OR) isgiven by, OR(w; ck) = nkw+0:1nk+0:1 =nkw+0:1nk+0:1nkw+0:1nk+0:1 =nkw+0:1nk+0:1where we added the constant 0:1 to avoid numericalproblems. By averaging over all categories we get,OR(w) =Xk Pr(ck)OddsRatio(w; ck):3.7 Word FrequencyThis is the simplest of the feature selection scores. Inthe study of Yang and Pedersen (1997) they show thatword frequency is the third best after information gainand �2. They also point out that there is strong cor-relation between these two scores and word frequency.For each category ck word frequency for word w, is thenumber of documents in ck that contain word w, i.e.WF (w; ck) = nkw :Averaging over all categories we get a score for eachw,WF (w) =Xk Pr(ck)WF (w; ck) =Xk Pr(ck)nkw :4 Classi�cation AlgorithmsTo determine the performance of the di�erent fea-ture selection scores, the classi�cation algorithms thatwe consider are the Multinomial, Poisson and BinaryNaive Bayes classi�ers ( McCallum and Nigam, 1998,Lewis, 1998, and Eyheramendy et al, 2003) and the hi-erarchical probit classi�er of Genkin et al (2003). Thenaive Bayes models are generative models (i.e., modelsfor Pr(x; y)) while the probit is a discriminativemodel(i.e., a model for Pr(yjx)). Many text classi�cationapplications continue to utilize Naive Bayes models.However, discriminativemodels such as support vectormachines and the hierarchical probit classifer typicallyprovide superior predictive performance. Genkin et al.(2003) provide detailed experimental results.5 Experimental Settings and ResultsBefore we start the analysis we remove common non-informative words taken from a standard stopword listof 571 words and we remove words that appear less
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Figure 2: Curves of performance for the multinomialmodel for di�erent number of words measure by macroF1 and micro F1 (which correspond to the bottom andtop set of curves resp.).than three times in the training documents, justify-ing this with the fact that they are unlikely to appearin testing documents. This eliminates 8; 752 words inthe Reuters dataset (38% of all words in training doc-uments) and 47; 118 words in the Newsgroups dataset(29% of all words in training documents). Words ap-pear on average in 1:41 documents in the Reutersdataset and in 1:55 documents in the Newsgroupsdataset.5.1 DatasetsThe 20-Newsgroups dataset contains 19; 997 articlesdivided almost evenly into 20 disjoint categories.The categories topics are related to computers,politics, religion, sport and science. We split thedataset randomly into 75% for training and 25% fortesting. We took this version of the dataset fromhttp://www.ai.mit.edu/people/jrennie/20Newsgroups/.The other dataset comprises a subset of the ModApteversion of the Reuters�21; 578 collection, where eachdocument has assigned at least one topic label (orcategory) and this topic label belongs to any ofthe 10 most populous categories - earn, acq, grain,wheat, crude, trade, interest, corn, ship, money-fx.It contains 6; 775 documents in the training set and2; 258 in the testing set.
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Figure 3: Curves of performance for the probit modelfor di�erent number of words measure by macro andmicro F1 (top and bottom sets of curves resp.) for theReuters dataset.5.2 Experimental ResultsIn these experiments we compare seven feature selec-tion scores, on two benchmark datasets, Reuters-21578and Newgroups (see subsection 5:1), under four classi-�cation algorithms (see section 4). We report so-calledF1 performance measures. F1 is the average of preci-sion and recall. See, for example, Genkin et al. (2003)for details.We compare the performance of the classi�ers for dif-ferent numbers of words and vary the number of wordsfrom 10 to 1000. For larger number of words the clas-si�ers tend to perform somewhat more similarly, andthe e�ect of chosing the words using a di�erent featureselection procedure is less noticeable.Figure 2, 3, 4 and 5 show the micro and macro av-eraged F1 measure for each of the feature selectionscores as we vary the number of features to select forthe four classi�cation algorithms - multinomial, pro-bit, poisson and binary respectively. In order to haveboth sets of curves (the curves with the micro F1 andmacro F1 measures) in the same graph we move themapart. The y�axes for the micro F1 (macro F1) mea-sure correspond to the y�axes on the left (right). Thereader will �nd these �gures easier to read in a colorrather than black and white rendition.We noticed that PIP gives, in general, high values toall very frequent words. This lead us to consider asecond version of PIP and PIPp, PIPlf and PIPplf
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Figure 4: Curves of performance for the poisson modelfor di�erent number of words measure by micro F1 andmacro F1 (top and bottom sets of curves resp.) for theReuters dataset.respectively, which correspond to the same score butwith the words that appear too frequently removed.Speci�cally, we remove words that appear more than2000 times in the Reuters dataset (that accounts for 15words) and more than 3000 times in the Newsgroupsdataset (that accounts for 36 words).Reuters. Like the results of Forman (2003), if forscalability reasons one is limited to a small number offeatures (< 50) the best available metrics are IG and�2 as Figures 2 � 5 show. For larger number of fea-tures (> 50), Figure 2 shows that PIPplf and PIPlfare the best scores for the mutinomial classi�er. Fig-ure 4 and 5 show the performance for the poisson andbinary classi�ers respectively. PIPp followed by BNSachive the best performance in the Poisson classi�erand PIPplf achieves the best performance in the bi-nary classi�er. WF performs poorly compare to theother scores in all the classi�ers, having the best per-formance with the poisson.Newsgroups. �2 followed by BNS, IG and PIP arethe best performing measures in the probit classi�er.�2 is also the best one in multinomial model followedby BNS and in the binary classi�er with the macro F1measure. OR performs best in the poisson classi�er.PIPp is best in the binary classi�er under the micro F1measure. WF performs poorly compare to the otherscores in all classi�ers. Because of lack of space we donot show graphical display of the performance of theclassi�ers in the Newsgroups dataset.
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Figure 5: Curves of performance for the binary naiveBayes model for di�erent number of words measure bymicro F1 and macro F1 (top and bottom sets of curvesresp.) for the Reuters dataset.Table 2 shows the performance of the four classi�ers inthe two datasets with 1,000 features. For the Reutersdataset, BNS provides the best performance for threeof models. However, a PIP score ties BNS in two cases,and comes close in a third. PIPlf provides the bestperformance in one case. For the newsgroup data, ORand BNS are best.Table 3 shows the predictive performance with 200 fea-tures. Again, PIP scores do well on Reuters and lesswell on Newsgroups. The chi-square score provides thebest performance in two cases.6 ConclusionIn this study we introduced a new feature selectionscore, PIP. The value that this score assigns to eachword has an appealing Bayesian interpretation, beingthe posterior probability of inclusion of the word ina model. Such models assume a probability distribu-tion on the words of the documents. We consider twoprobability distributions, Bernoulli and Poisson. Theformer takes into account the presence or absence ofwords in the documents, and the latter, the numberof times each word appears in the documents. Futureresearch could consider alternative PIP socres corre-sponding to di�erent probabilistic models.�2, BNS, and PIP are the best performing scores.Still, feature selection scores and classi�cation algo-



IG PIP �2 OR BNSWF PIPp PIPlf PIPplfReuters-21578 datasetprobit 0.91 0.91 0.91 0.76 0.92 0.90 0.91 0.90 0.91poisNB 0.69 0.72 0.70 0.73 0.76 0.68 0.76 0.70 0.74multiNB0.84 0.84 0.84 0.73 0.84 0.81 0.83 0.86 0.85binNB 0.79 0.82 0.80 0.69 0.83 0.76 0.83 0.81 0.8220-Newsgroup datasetprobit 0.75 0.74 0.77 0.63 0.76 0.64 0.72 0.74 0.72poisNB 0.77 0.77 0.81 0.93 0.80 0.68 0.85 0.77 0.85multiNB0.58 0.59 0.62 0.50 0.64 0.61 0.55 0.62 0.58binNB 0.55 0.52 0.58 0.59 0.56 0.46 0.57 0.52 0.57Table 2: The �rst column correspond to the classi�er(probit,poisson,multinomial,binary. The numbers onthe other columns correspond to the micro F1 measurefor 1000 words.IG PIP �2 OR BNSWF PIPp PIPlf PIPplfReuters-21578 datasetprobit 0.92 0.90 0.93 0.62 0.87 0.86 0.89 0.90 0.87poisNB 0.74 0.74 0.77 0.62 0.78 0.73 0.78 0.71 0.76multiNB0.78 0.77 0.80 0.58 0.78 0.68 0.78 0.82 0.81binNB 0.77 0.76 0.80 0.67 0.77 0.65 0.77 0.78 0.8120-Newsgroup datasetprobit 0.66 0.65 0.70 0.53 0.66 0.46 0.59 0.59 0.53poisNB 0.80 0.82 0.84 0.94 0.86 0.38 0.84 0.83 0.84multiNB0.52 0.53 0.58 0.51 0.55 0.37 0.53 0.53 0.47binNB 0.53 0.50 0.56 0.43 0.58 0.36 0.58 0.53 0.58Table 3: The �rst column correspond to the classi�er(probit,poisson,multinomial,binary. The numbers onthe other columns correspond to the micro F1 measurefor 200 words.rithms seem to be highly data- and model-dependent.The feature selection literature reports similarlymixed�ndings. For instance, Yang and Pedersen (1997)�nd that IG and �2 are the strongest feature se-lection scores. They perform their experiments ontwo datasets, Reuters-22173 and OHSUMED, and un-der two classi�ers, kNN and a linear least square �t.Mladenic and Grobelnik (1999) �nd that OR is thestrongest feature selection score. They perform theirexperiments on a Naive Bayes model and use the Ya-hoo dataset. Forman (2003) favors bi-normal separa-tion.Our results regarding the performance of the di�erentscores are consistent with Yang and Pedersen (1997)in that �2 and IG seem to be strong scores for featureselection in discriminativemodels, but disagree in thatWF appears to be a weak score in most instances. Notethat we do not use exactly the same WF score. Oursis a weighted average by the category proportion.
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