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Speaking discretely...

by Deborah S. Franzblau

First, some news on the Leadership Program in Dis-
crete Mathematics. Beginning next summer, we plan to introduce new
programs for K-8 teachers, and to continue our in-service workshops.
Please tell your colleagues, and circulate our flyer (p. 11) widely!

If you've ever tried scheduling final exams, or organizing a con-

Is It on Time?

by Joseph Malkevitch

For many years Denver has been looking
forward to the opening of a new international air-
port, which would not only expand operations,
but would feature a state-of-the-art baggage sys-
tem with unprecedentedly fast and accurate han-

ference, you'll appreciate the focus in this [

dling of baggage. Unfortunately,

issue on discrete scheduling problems. In
the lead article (p. 1) and Minibibliogra-
phy (p. 10), Joseph Malkevitch discusses
the mathematics of scheduling, and
sketches the wuseful "Critical-Path"
method for planning complex projects. L.
Charles Biehl (p. 4) explains the use of
graph coloring to resolve conflicts when
scheduling meetings or exams. Kevin
DeVizia (p. 2) describes a class project to
find the best arrangement of songs on a
cassette tape---which turns out to be
cquivalent to a well-known scheduling
problem!

“there 1s often a slip twixt the cup
and the lip...” After several post-
ponements, the opening of the air-
port has once more been delayed: in
the most recent test of the baggage
handling system, pieces of baggage
were not only ripped, cut in half,
and tossed in the air, but they often
arrived at places other than those in-
tended [1].

Contrast this with what hap-
pened in Los Angeles after the re-
cent ecarthquake. That earthquake
knocked out of commission the

If you are looking for ideas to
enliven the class around election time, you should look at the article by
Michael Ecsedy (p. 5), showing how a method of voting influenced a real
election, and the teaching bricf by Sherida Hare (p. 4).

Diane Amelotte (p. 7), takes a fresh look at a familiar problem
from algebra and calculus: that of creating a garden plot with minimum
cost. She turns the problem into a Thanksgiving story suitable for stu-
dents at many levels. William Bowdish (p. 3) shares his experience on
bringing the concept of "fractal complexity" into an algebra class.
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largest and most heavily used free-
ways in the city, including the legendary Santa
Monica Freeway, one of the highest-volume roads
in the world. Yet despite predictions that the road
would not be returned to service quickly, it was
reopened earlier than scheduled, with people trip-
ping over each other to receive credit [2].
Efficient scheduling is often critical in
modern-day life. For example, if surgical opera-
tions at hospitals can be scheduled more effi-
ciently, millions of dollars for the construction,
maintenance and staffing of additional operating
theaters can be avoided. If the production of new
cars can be organized and carried out more effi-

-~ ciently, then the cost of cars can be cut and the

United States can become more competitive with

. other car producers.

Scheduling used to be a trial-and-error

~- . procedure. Someone tried out a schedule and tin-
- kered with it to see if it got better. If no improve-

ment occurred, someone else would tinker in a
different way. The advent of computers has vastly

.~..4  increased our ability to search for improved
.7 - schedules. In addition, computers have created a

(Continued on page 9)
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A Musical Packing Problem

by Kevin DeVizia

[ find it more challenging to make math seem impor-
tant to my unmotivated Algebra I students than to any other

group that I teach. In order to convince such students that |
mathematics is useful, I've often found that the best examples |

are all around me in everyday life, just waiting to be noticed. 1

found myself in the car one day stuck in a traffic jam, when the

cassette tape to which I was listening stopped playing. After a
long wait, the tape still was not playing. Finally, switching the
tape to the other side revealed that there was a great disparity
between the total lengths of songs on the two sides of the tape.
Could there be a better way to organize the songs so that the
"dead time" on the tape could be minimized? Great! Another
application for my kids to think about.

Listed below are the times of the songs on the two
sides of this cassette (in minutes:seconds).
Side 1: 4:10, 2:39, 3:59, 3:47, 3:20, 3:11 (Total = 21:06).
Side 2: 3:21, 4:38, 2:32, 3:49, 1:47, 3:40 (Total = 19:47)

The data above gives a disparity of 1:19 and a comple-
tion time of 21:06. Essentially, this is a bin-packing problem,

in which the songs are items to be packed in two variable-sized
bins. (See the sidebar on Packing and Scheduling.) While my
Algebra I students had never heard of bin-packing, they could

certainly relate to this application.

I asked my students how to arrange the songs to

achieve the minimum disparity, and a lively discussion ensued,
with students offering different methods of attack. Occasion-

ally, a student would be sure that the perfect solution was
found--only to find an error in computation or someone with a

better answer. Eventually the students wanted to know, "Well,
what is the answer?" Of course, in my excitement over the

problem, I never did decide on a solution, and this was all for | q51

the best--it was up to the students to check whether we had

found the best solution. Could we be sure? As one student |

pointed out, we could list all possible ways to place the songs
on the tape and then be sure. No problem, except that there are
2048 different ways to do this (this includes ridiculous arrange-

ments, like all 12 songs on side one). By hand, the best solution |

my class found has a disparity of only 3 seconds. Of course, this
does not take into account any aesthetic concerns for arrange-
ment of songs. An interesting variant would be to classify
songs as "slow" or "fast" and require that each side have an
alternating sequence of these two types. This problem inspired
my class to share a wide variety of creative strategies, and al-
lowed students to interact in a meaningful way with mathemat-
ics and with each other.

Note: an earlier version of this article appeared in the
Newsletter of the Pennsylvania CTM in Spring, 1993.
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Finding the Fractal Complexity of a Coastline

by William L. Bowdish

Veteran teachers are fully aware that 14 year olds
know everything that there is to know about mathematics!
However, when I gave this lesson on fractal dimension
(complexity) to my accelerated 9th-grade honors-algebra
class, they were truly amazed. I got the idea for this lesson
from Terry Perciante, who taught an excellent one-week
course in the Leadership Program in Discrete Mathematics
at Rutgers during the summer of 1993. To prepare this
three-day unit, I needed only a few hours of preparation and
reading [1, 2].

I decided to ask my class to compute the complexity
of the coastline of Martha's Vineyard, a gorgeous island off
the coast of Massachusetts, and focus on using the "compass
method" to calculate its fractal dimension. Each student
received a photocopy of a hypothetical irregular coastline
(see below), a map of Martha's Vineyard, and a (drawing)
compass. I used transparencies to explain the calculation.

[ drew a 4-inch straight line segment on a
transparency, and showed, by “walking” a compass along the
line, that the line is 8 units long if the units are 1/2 inch (the
distance between the compass legs is 1/2 inch), and 16 units
long if the units are 1/4 inch: i.e.,

4=8x1/2=16x 1/4.

This helped motivate a procedure to compute the
dimension of any curve by walking a compass along the
curve for different lengths. We let X be the number of units
counted for compass opening 1/2 inch, and Y the number of
units for compass opening 1/4 inch. (Note: 1/2 and 1/4 are
chosen for convenience, other pairs like 1/8 and 1/16 would
also work in theory--but no one would have the patience in
practice!)
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If the dimension were one (like the straight line),
we'd expect Y = X X 2" (above, 16 = 8 x 2"). By analogy,
letting D be the dimension, we set

Y=Xx2ﬂ, or2°=Y/X.

To approximate D, we need only compute X and Y
by counting compass “steps.” For example, if X is 10.8 and
Y 1s 23.2, we get 2°=2.148, or D = 1.1. The main drawback
with this method is that it can be a struggle to compute X
and Y using compasses.

I gave each student a copy of an imaginary coastline
similar to that below (but larger), put students in groups of 2
or 3, and asked them to find the dimension.

The students found X and Y, then using a guess-
check-and-revise strategy, the students solved for D. Then,
with their calculators, they checked the answer using the

formula
D = log(Y/X)/log 2 (i.e., logbase 2 of Y/X).

Lastly, I passed out the maps of Martha's Vineyard,
and directed the groups to calculate its coastline dimension.
According to my class, D is approximately 1.44.

References
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Scheduling and Graph Coloring

by L. Charles (Chuck) Biehl

Consider a school that requires its staff members to
serve on various committees which all hold regular
meetings. Trying to schedule the minimum number of
meetings so that no one has to be in two places at the same
time can be a difficult task, especially if the scheduling is
done by trial-and-error. Here is a situation in which using a
graph model can greatly reduce the difficulty of the problem.

Recall that a graph is a set of points, called vertices,
connected by a set of lines, called edges. In the case of a
scheduling problem such as the one above, the vertices
represent the committees, and the edges connect those
committees which cannot meet at the same time because of a
membership conflict. Such a graph is called a conflict graph.

The following 1s a sample problem whose solution
is given below. The committees and their respective
memberships are:

(C)urriculum: Davis, Franks, Grover
(D)iscipline: Bennett, Edwards, Hill
(T)extbooks: Bennett, Edwards, Isaacs
(A)ssessment: Alamos, Chavez, Davis
(F)acilities: Alamos, Edwards, Franks
(M)anagement: Chavez, Grover, Johnson

The conflict graph is shown in Figure 1. It is clear
from the graph that there have to be at least three different
meeting times; for example, committees M, A, and C all
have conflicts with one another, as do committees F, C, and
AandF, D, and T.

So where does coloring come in? Suppose that
the vertices of the conflict graph are colored so that vertices

green

green

Conflict Graph

joined by an edge have different colors. Then a set of vertices
which are the same color represent committees that can meet
at the same time. Notice that it is possible to color C and T
red, D and A blue, and M and F green. This means that a
possible solution to the problem is to let the first meeting
time be Curriculum and Textbooks, the second meeting time
Discipline and Assessment, and the third meeting time
Facilities and Management.

The origins of conflict graphs are in coloring maps,
where regions which share a border must be different colors.
However, the idea can easily be extended to cover other kinds
of conflict as well, such as animals which cannot be placed
in the same habitat, chemicals which cannot be stored in the
same room, or school courses whose final examinations
cannot be given at the same time. (Note: the zoo habitat
problem appears on the video Geometry, available from
COMAP.

An Election Followup Activity

by Sherida Hare

This is an activity that I used successfully in a
precalculus class. I presented material and worked examples
similar to those in [1] and [2] which took about 5 days. The
presentation covered not only different voting methods, but
also some of the paradoxes in voting.

After the students had a working knowledge of
how voting works, we put together a questionnaire on the
1992 presidential election asking readers to rank the three
candidates (Bush, Clinton, and Perot). We then looked at
six vote-counting methods discussed in class: Majorty-Rule,
Plurality, Condorcet, Borda Count, Sequential, and

Sequential Run-off [1, 2]. We polled the entire school and
looked at the results of each method. Clinton won in all cases
except for the 11th grade Borda Count in which Perot won.
Bush came in last place in all of the results.

References

[1] COMAP, For All Practical Purposes, 3rd Ed., W.H.
Freeman, New York, 1994, Chap. 11.
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The Last Shall Be First:
a Historical Illustration of Sequential Run-off

by Michael Ecsedy

In a multi-candidate election, one way to determine
the winner is by the sequential run-off method. The voting
proceeds in phases; after each phase, if there 1s no majority
winner, the candidate with the fewest votes is eliminated.
Voting is continued until some candidate has a majority of
the votes. It is known that insincere voting can influence the
outcome, although we rarely see this in practice. This article
is about such an election which occurred four years ago [1].

The Republican party of Connecticut's fifth Con-
gressional district was to nominate a contender for the seat
being vacated by the incumbent, who was making a run for
governor. The district was blessed with 5 candldates for the
position, whom we shall label A, B, C, D, and E.'

The delegates began the voting at 7:00 PM. The
first three rounds of balloting produced no winner and little
shifting of candidate strength between rounds. The voting
went as follows:

Round 1: Round 2: Round 3:
A 36 A 37 A 36
B 33 B35 B 37
C 30 C 30 C 32
D 22 D 19 D 16
E 21 E 21 E 21

| Convention rules dictate that no candidate can be
chosen without receiving votes from the majority of the 142
delegates assembled. If only a plurality were required, Can-
didate A would have won on the first ballot.

After the third round, candidate D noted his vote
totals decreasing, read the handwriting on the wall, and
dropped out of the race, releasing his delegates. His support
was scattered among the four remaining candidates through
the next three ballots.

Round 4: Round 5: Round 6:
A 39 A 39 A 38
B 43 B 42 B 42
C 36 C 33 C33
E 24 E 28 E 29

At this point (1:15 AM), the exhausted and exasper-
ated conventioneers decided to adopt the sequential run-off
procedure to break the deadlock. This is where strategic in-
sincere voting played a role. Candidate B knew he wouldn't
be eliminated on the next ballot and instructed some of his
delegates to vote for Candidate E, fearing that Candidate C
would ultimately be his strongest foe in the final rounds and
knowing that he would not get any of candidate E's dele-
gates. He felt that if he could knock out Candidate C at this

point, he could ultimately win the nomination. The totals for
Round 7 read.:

Round 7:
A 37
B 36
C 34
E 35

and Candidate C was eliminated. It is worth noting that on
this ballot any one of the 4 remaining candidates could have
been eliminated with a switch of just a few votes.

Candidate C was incensed at Candidate B's games-
manship, and instructed his delegates to vote for Candidate
A. However, 14 of the 34 decided to support Candidate E
instead, enough to eliminate B rather than E. (Was their mo-
tive to exact revenge on Candidate B?) The 8th ballot totals
read:

Round 8:
A 57
B 38
E 47

and Candidate B was eliminated. B threw his support to E,
and at 2:45A M. the balloting was completed, with the final
totals showing:

Round 9:
A 61
E 81

and E won the nomination.

Candidate E was Gary Franks, a formerly obscure
Waterbury alderman who went on the win the election and
rose to fame as the only black Republican in the 1991-1995
House of Representatives. He was frequently cited by the
Bush administration as a black man who could win running
as a Republican. The remarkable distinction of this election
is that the man who was preferred by the least number of
delegates on the first ballot became the eventual winner. He
who would have been last ... under the plurality method ...
finished first!

1. Steve Watson (A), Alan Schlesinger (B), Warren Sarasin (C), James
McLauglin (D), and Gary Franks (E).

References
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Classroom Ideas...

A certain number of people are in a
room. If each person shakes the hand
of every other person how many
handshakes will occur? By physical
experimentation we found that the
first person shook hands with one less
person than the total number of
people in the line. Each person there-
after shook one less hand than the
person before. Another method that
led to the same pattern was to use a
polygon which had the same number
of sides as the number of people.
When we added the number of
diagonals to the number of sides it
gave us the number of handshakes.

Marion Gorman (LP '92)
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Pre-Thanksgiving Project

by Diane Amelotte

This 1s a lesson I designed for the three school days prior to
Thanksgiving to hold the attention of my eighth grade

pre-algebra classes. It is based on the following situation.

THANKSGIVING PROJECT: A new scientifically
developed fertilizer called Harvest Plenty Soil Enhancer
costs $175 for a bag that will fertilize an area of 240 square
feet. Miles Standish IX wishes to fence in a garden with this
area in a portion of his yard. The yard itself is a rectangle 65
feet by 35 feet. He must purchase the fertilizer, fence posts
and the fencing. Pilgrim Hardware offers the best deal for
fencing. They sell fencing from a huge roll of fencing,
charging $3.95 per linear foot. To prevent the fence from
sagging, it must be attached to fence posts which are at most
8 feet apart as well as a post in each corner of the garden.
Each post costs $7.50.

The project involves experimentation with different
garden layouts. On the first day, we warm up by reviewing
the concept of factoring and how to count the factors of a
given number (see p. 8). On the second day, we review
counting factors, then students are divided into groups of
four (I do this by handing out playing cards and grouping by
face value). Each group of four has one "recorder" (I
arbitrarily designate the student with the "club" as the
recorder), who receives the description above and an
instruction sheet for the group (see below). (Note: I vary
parts of the given information. For example, some teams are
asked to place posts no more than 12 feet apart and others
have different prices for fencing and posts. This reduces
interest in the results of neighboring teams.)

:Hlf!t s i R i
2 the garden must be a rectangle

* each filmﬁnsmn must he a nnnzern whﬂle number
:maasured n feet e S e
_* the area of thf: gaxdﬂn must be 240 square feet

'quanuty and cnst 0f each purchase fr.:ur each layﬂut ancl

it -v.-?mmamgm;;:,

ﬁndmg the total cast uf e.ach Iayaut

e"pe“s‘ve 133’0“{? o fffi ff:

In Part 1, since 240 = 2" x 3 x 5, there are 20
possible factors, giving 20 possible pairs for the length and
width. However, because of the restrictive dimensions of the
vard, only 11 of these give possible layouts.(I assume 8 x 30

and 30 x 8 are considered different layouts.)
(Continued on page 8)
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Pre-Thanksgiving...

(Continued from page 7)

Each student is given a worksheet; the
recorder collects the worksheets and hands them in at the end
of the period. To create the worksheets, I divide an 8.5 x 11
sheet of 1/4" graph paper into 12 equal parts, letting 1 unit =
5 feet. Each part contains a 7 x 13 unit grid (representing the
35 ft x 65 ft backyard). I give each student one 2-sided
worksheet.

Some students will mistakenly assume that on the
grid, 1 unit = 1 foot. I ask these students to estimate the ratio
of the area of the garden to the area of the yard to determine
if their layouts are reasonable. The ratio is 240/2275 which
is approximately 240/2400 or 1/10. Revisions usually follow.

Students may also need to be reminded that
determining the number of posts is not a matter of simply
dividing the perimeter by 8. The team needs to discuss this
carefully. Hint: ask them if there can be an odd number of
posts. (A few days after Thanksgiving can be given to
developing an algorithm for determining the number of posts
using divisibility and the greatest integer function.)

To finish the project before Thanksgiving, Part I of
the project should be completed on the second day. Lend
assistance as needed if teams are not drawing sound
conclusions after a reasonable time. Students can go on to
Parts IT and III on the second day, if there's time.

For Part II, the cost of implementing a layout
includes the fixed cost of the fertilizer ($175) as well as the
variable cost of the fencing and posts, which are determined
by the perimeter and dimensions. Students should figure out
that although a 12 x 20 layout may be distinguishable from a
20 x 12 layout in the yard, the cost to implement each is the
same. In fact there are actually only 7 layouts with different
costs. Students may guess or reason correctly that the layouts
with the greatest and least perimeters have the greatest and
least cost, respectively. Using a team strategy can reduce the
amount of work needed in this step.

On the third day, students should complete parts 11
and III. If a team finishes early, give the recorder an
additional problem:

except - that---the area .ﬂf__the garden must still be
(apprnmmately) 240 square feat (ta use aniy UHE bag af

;:_'Psii‘t' IV .S.uppasg the four reqmrements 115ted m Part I are;f_;
‘no Ianger necessa,ry (for ﬂxample the cl1men510ns need not
be who]e numbers and the shape need not be a rectangle),?f

.........................

With the restrictions removed, a few students may realize
that a circular garden with a radius approximately the square
root of (240/%) only requires 7 posts. Others may se¢ that of
all rectangular layouts, a square (or nearly square) garden
will have the least cost for a given area.

During the project, students may ask whether there
is a need for some type of a garden gate. I suggest that a gate
could be figured into the cost and the fencing perimeter and
number of posts could be recalculated. Most students respond
with the recommendation that, for the time being, Miles can
easily hurdle the fence.

Finding all the Factors

I first review vocabulary: factor, divisor, multiple,
prime and composite numbers, prime factorization. Then
we work on the following problems as a class in
preparation for the project.

List and count the factors of:

(1) 54 [Ans: 1, 2, 3, 6, 9, 18, 27, 54; 8 factors].
(2) 156 [Ans: 1,2, 3,4, 6, 12, 13,.26, 39, 32,718,
156; 12 factors].
Now try:
3)16[1, 2, 4, 8, 16], 32 [1, 2, 4, 8, 16, 32]
Observe: 16 = 2* and has 5 = 4+1 factors
(4) Generalize to 2" [Ans: 1, 2', 2%, ..., 2% n+1 factors]

Now observe: 54 = 2'x 3°,
So the possible factors are:

2°x3%°=1 2'x3°=2
¥x3'=3 2'x3' =6
2°x32=09 2'x 32 = 18
2% x 3° = 27 2'x 3% = 54

and so 54 has 8 = (1+1)(3+1) factors.

Now fry:
(5) 156 = 2*x 3 = 13
[Ans: Q+D(1+1)(1+1) =3x2x2 = 12]

Generalize to:
(6) N =2*x3"x5%7¢
[Ans: (a+1)(b+1)(c+1)(d+1)]
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new world of scheduling problems, in particular, how to
meet the needs of the many users of a time- or
resource-constrained computer system.

Mathematics has fundamentally changed schedul-
ing. First, mathematical analysis introduced taxonomy. For
example, some scheduling problems are deterministic or
static (all necessary information is known), others are dy-
namic (information changes over time) and may involve
stochastic processes (such as customers arriving at a bank).
In developing this taxonomy, among the many questions that
have been considered are as follows:

1. What tasks have to be accomplished, and by which ma-
chines? (E.g., the tasks could be financial transactions, and
the "machines" could be either human or automated bank
tellers.)

2. Are there restrictions on the order in which tasks must be
accomplished? (E.g., you cannot put a roof on a new house
before the foundation is laid.)

3. Are there other priorities given for the tasks? (E.g., you
want to make sure the guest room is done before Grandma
comes for her yearly visit.)

4. Are there penalties when tasks are completed after the
due dates (or premiums for tasks completed early, such as
in [2])?

5. Once a machine has started work on a task, must it com-
plete the task, or can it interrupt its work if a higher priority
task appears?

6. What goals are involved in the scheduling? Minimizing
idle time of machines? Completing the tasks as quickly as
possible? Using as few machines as possible?

Beyond taxonomy, modern mathematics has ofiered
a broad array of optimization techniques and other tools to
assist with the solution and understanding of scheduling
problems. One of the early pioneers in the mathematics of
scheduling was NASA. Carrying out the Apollo project to

land on the moon required careful use and timing of re-
sources. NASA still must schedule carefully for efficient op-
eration of its Shuttle Fleet. Another pioneer was Bell Labora-
tories (now AT&T Bell Laboratorics and Bellcore), where
mathematicians such as Ronald Graham, David Johnson,
and Edward Coffman made many advances in the mathemat-
ical theory of scheduling. Scheduling is now an established
sub-area of mathematics within broader areas of mathemat-
ics concerned with operations research, management sci-
ence, and computer science. Tools that have been used to
study scheduling come from combinatorics and number the-
ory, as well as other parts of mathematics, and include struc-
tures such as undirected and directed graphs and
partially-ordered sets, and techniques such as mathematical
programming, and packing and coloring algorithms. (See
Critical Path Scheduling, below, as well as the articles by
C. Biehl and K. DeVizia in this newsletter.)

References [see also the Scheduling Minibibliography on
p. 10 of this newsletter]:

[1] Johnson, Dirk, “Denver May Open Airport in Spite of
Glitches”, NY Times, Wednesday, July 27, 1994, p. Al4.
This is one of a series of articles appearing over several
months about delays in the planned opening of the new Den-
Ver airport.

[2] Margolick, David, “Quake-Damaged Freeway Reopening
Ahead of Time”, NY Times, Tuesday, April 12, 1994, p. Al2,
This article recounts the reconstruction program to reopen
the Santa Monica Freeway after it was closed by the Los An-
geles earthquake, The contractor responsible for the recon-
struction finished the work 74 days ahead of schedule! The
reconstruction cost $29.4 million (which includes a
$200,000 bonus per day for each of those 74 days, or $14.8
million!)

To give you some flavor of a modern scheduling
problem, consider the question of efficiently turning around
a shuttle plane providing service between two cities. Among
the tasks that must be completed to do this are: refueling the
plane, putting new drinks and food aboard, cleaning the
cabin, unloading current cargo and loading new cargo,
unloading current passengers and loading new ones.
Clearly, some of these tasks must be done before others; one
cannot clean the cabin before the current passengers are
deplaned. One can use a “task analysis digraph,” i.e., a
graph with vertices (circles) representing tasks, and directed
edges (arrows) representing precedence constraints (see
figure). The length of time (in minutes) to perform a task is

Critical Path Scheduling

indicated inside the circle representing the task. An arrow
from Taski to Taskj means that Task i must be completed

(Continued on page 10)
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(continued from page 9)
before Task j can begin. The digraph shown in the figure is
for illustration only; the real digraph for such a project may
be quite different.

Our goal 1s to construct an early-start/early-finish
table (Table 1), and a late-start/late-finish table (Table 2).
Table 1 gives for each task the earliest time that work on that
task can begin and end. Table 2 gives for each task the latest
time that work on that task can begin and end, given the
constraint that the last task(s) are completed by the earliest
possible completion time, Essentially, the late-start/
late-finish table identifies those tasks that have some
flexibility in their scheduling. To perform the entire job
efficiently, each task must begin on or after its early-start
time but on or before its late-start time.

Table 1

Task | T() | T@) | TG) | T@) | 16) | T6) | T(T) | T(8®)

Early | ( 0 0 13 | 10 | 25 | 43 | 43
Start

Early | ]3 10 | 14 | 22 | 25 | 43 | 47 | 50
Finish

Table 2

[Task | T) | T@) | T®) | T(9) | T68) | TG6) | T() [ T8)

Early | 3 0 36 16 10 | 25 | 46 | 43
Start

Early | 16 | 10 | 50 | 25 | 25 | 43 | 50 | 50
Finish

Here are some hints to show how Table 1 was
constructed. First, scan through the digraph in Figure 1 from
left to right. Since tasks T(1), T(2), and T(3) have no
predecessors, they can start at time 0, and their early-finish
time is their early-start time (0 here) plus the time the task
takes. How early can task T(6) start? It can not begin until
both T(4) and T(5) are done. Hence, the earliest start time or
T(6) 1s the maximum of the early finish times of T(4) and
T(5), or 25 minutes. Other entries are found analogously.
Observe that if each task begins right on its early-start time,
and is completed in the time shown, the whole job can be
completed by the largest time given in the table (50 minutes
here). Notice that there is a path, T(2), T(5), T(6), T(8), such
that the sum of the task times is equal to the early-finish

time; such a path 1s called a “critical path.” The tasks on this
path require 50 minutes, so that 50 minutes is the best
possible completion time.

Once Table 1 is complete, Table 2 can be filled in.
This time, we scan through the digraph from right to left.
Since the latest completion time of any task i1s 50 minutes,
this is also the earliest completion time for the whole job.
Since T(3), T(7), and T(8) have no tasks which must come
after them, their late-finish times are all 50. The late-start
time for Task 7 is -

50(late-finish time) - 4(task time) = 46 minutes.

Other entries 1n Table 2 are found in a similar way.
Examining the two tables, one can see that there is no
flexibility in scheduling a task if and only if it lies on a
critical path.

Scheduling Minibibliography
by Joseph Malkevitch '

1. Coffman, E.G., Computer & Job/Shop Scheduling, Wiley, |
New York,1976. Excellent survey but now a bit dated. '

2. COMAP, For All Practical Purposes, W.H. Freeman, 3rd
Ed., 1994. An account of the critical path method and of the
list-processing algorithm for scheduling machines 1is
described. Some of the paradoxical behavior that occurs in
scheduling theory is described.

3. Graham, Ronald, The Combinatorial Mathematics of]
Scheduling, Scientific American, 238(3), March, 1978, pg.
124-132. A very readable account of machine scheduling,
and some of the paradoxical behavior scheduling theory
sometimes produces (e.g., adding more machines can
sometimes make things take longer).

4. Graham, Ronald, "Combinatonial Scheduling Theory", in
Steen, L.A.(ed.), Mathematics Today, Springer-Verlag,
1978. A survey of elementary results about scheduling.

5. French, Simon, Sequencing and Scheduling, Wiley, New
York, 1982. Technical but locally readable account of
scheduling theory.

6. Lawler, E., "Recent Results in the Theory of Machine
Scheduling", in Mathematical Programming: The State o

the Art, Ed. A. Bachem, M. Grotschel, and B. Kr.artefl
Springer-Verlag, New York, 1983. A technical but relatively

accessible survey as of about 1980.

|
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RUTGERS UNIVERSITY

LEADERSHIP PROGRAM IN DISCRETE MATHEMATICS

WHAT?
WHO?

WHEN?

STIPENDS?

PARTICIPANTS

DATES:

QUESTIONS:

WHAT?

WHEN?

BY WHOM?

COST?

QUESTIONS?

Summer institutes ... for K-8 teachers ... in discrete mathematics

Two-week residential and two-week commuter institutes at Rutgers University.
For teachers of K-8 students, as well as mathematics supervisors and specialists.

The two-week institutes will run during the period from June 26 to July 28, 1995. Participants
will be expected to attend four Saturday follow-up sessions during the 1995-1996 school year and
a one-week 1nstitute the following summer.

Anticipated funding from the National Science Foundation will provide each participant with a
stipend of $250-$300 per week, as well as meals and lodging (double occupancy on weeknights)
for the residential institutes.

... will be expected to: * 1introduce discrete math into their classrooms
* develop materials for use by other teachers
* present workshops on institute topics

Applications are due by March 20; applicants will be notified by April 26, 1995.

For further information, or to receive an application form, call Stephanie Micale at 908/445-4065
or write to the address below.

Workshops in Your District

Full-day workshops in your district for teachers of all grades on topics in district mathematics
which can be introduced into K-12 classrooms and curricula.

Workshops will be scheduled during the school year (and during the summer) on an individual
basis at the request of the participating district.

Expernienced teachers of the Leadership Program in Discrete Mathematics who have participated
in a training program on preparing and presenting workshops.

The district will be expected to pay only direct costs -- expenses and honoraria for the workshop
leaders and instructional materials for the participants.

For further information, call Michelle Bartley-Taylor at 908/445-4065 or write to the address
below.

Leadership Program in Discrete Mathematics
P.O. Box 10867
New Brunswick, New Jersey 08906
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