...USING DISCRETE MATHEMATICS IN THE CLASSROOM

Topics... What the Computer Can and Cannot Do

by Frances Marcello

In this age of seemingly limitless technology, one might assume that there is no job a computer can’t do. But the real
question is ‘‘Can we wait for the computer to finish?’’.

The problem used to discuss this question appears in Dynamic Programming -- An Elegant Problem Solver, by Cliff
Sloyer et al., Janson Publications, Inc. (1987).

PROBLEM: You are givena 30 x 30 grid with a number on each edge representing the time required to travel that
edge. Find the fastest path (consisting of North and East directions only) to get from point A to point B.

When I presented this problem to my students and asked for a possible solution, they immediately gave me the brute
force approach -- simply find the lengths of al/ paths and then choose the smallest.

The question ‘“How much time would you need to calculate the solution?’’ resulted in answers from 30 minutes to as
long as 2 weeks. ‘‘How much time would a computer operating at 100,000 operations per second require?’’ ‘“No time at all!!”’
was the unanimous opinion.

We decided to analyze the problem to confirm their opinion. Here are three simplified versions of the problem:

Consider the 2 x 2 grid at the left. A path here requires . - -
traversing 4 edges, e.g., ENEN. Since each path consists

of 4 edges with 2 N’s and 2 E’s, there are ,C,=6 paths ¢ g 4 _.,._
to calculate. How many additions are necessary to deter-

mine the length of each path? E+ N+ E + Nrequires 3 [} A X A A
additions. We need to perform ,C, - 3 = 18 additions.

Now consider the 5 x 5 grid at the right. Here we traverse] I ; I I I
10 edges, e.g., NEENNENNEE. The 10 edges of 5 N’s -....

and 5 E’s produce ,,C, =252 paths. Each path requires
9 additions for a total of | C, - 9 = 2268 additions.

Now consider a 10 x10 grid. We are up to 20 edges of 10 N’s and 10 E’s resulting in Cio = 184,756 paths. With
19 additions per path we would have , C - 19 =3,510,364 additions.

By this time students were astonished to see the number of paths and operations skyrocket as we went from 2 to 3
to 10 unit square grids. And we weren’t finished. Now we had to select the shortest path!

“"How many comparisons are necessary to find the shortest path?’’ Again we use brute force. We compare the 1st

path to the 2nd, choose the smaller, compare that to the 3rd, choose the smaller, ... continuing until all paths have been compared.

Our 2 x 2 grid requires ,C,- 1 =15 comparisons.
Our 5 x 5 grid requires |, C. - 1 =251 comparisons.
Our 10 x 10 grid requires , C, - 1=184,755 comparisons.

Finally we sum the total number of operations required and find the time required for our computer to finish its job.
Total operations = (number of additions) + (number of comparisons)
Time required = (total operations)/100,000 seconds

The 2x 2 grid requires a time of .00023 seconds, the 5x 5 grid a time of .02519 seconds, and the 10x 10 grid a
time 0f36.95119 seconds. At this pointI can hear asigh of relief; after all, even though the number of operations seemed large,
the job can still be done in a feasible amount of time.

But then the class returned to the original problem, looking at the 30 x 30 grid. We have established some patterns
we can use to help in the calculations. The gridhas C,, paths with 59 additions per path and will require T3~ 1 comparisons
to find the shortest path. Carrying out the usual calculations yields the result that the 30 x 30 grid requires about 7.0 x 10%
seconds.

(Continued on Page 9)

