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Abstract. This module explores the role of non-Euclidean met-
rics in spatial scan statistics, a tool in biosurveillance. The problem
is framed in a biological context while being formulated in math-
ematical terms. This includes a description of the algorithm and
appropriate formulas, followed by both computational and philo-
sophical questions. The formal definition and properties of metrics
are also given and illustrated through discussions and exercises.
The ultimate goal is highlighting the role and potential importance
of geometry in the non-traditional setting of biosurveillance.

Target Audience: The intended target audience is junior-level stu-
dents whose majors include mathematics or related fields. However,
leaving out the specifics of metrics makes this module appropriate for
any math or critical thinking course, for example, Discrete Math.

Prerequisites: This module assumes some level of mathematical
maturity. Some exercises and projects may require some more mathe-
matical sophistication, programming ability, or the ability to download
and install software, but these can be easily skipped.

1. Introduction

1.1. Biosurveillance is the monitoring of biological conditions, for ex-
ample disease spread, for the purpose of detection of outbreak. We
shall explore in this module some accepted techniques for outbreak de-
tection that also invite an opportunity to introduce a more flexible way
of thinking about distance.

Consider the following problem: we measure the quantities of in-
fected people in a divided region and compute the percentage we would
expect to be “normal”. We then want a technique that will check for
pockets of “abnormal” amounts of infected people, as this will indicate
an outbreak. Spatial scan statistics is one method that searches for
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these pockets.

Discussion 1. What could be appropriate definitions for the word
“outbreak”? What could be appropriate definitions of “normal” and
“abnormal”? What are some of the problems that could arise with
these definitions? Discuss different ways to divide the region.

1.2. As in all modeling techniques, we must make assumptions about
our data to reduce the complexity. First, we ignore any demographic
bias. For our purposes, we begin with a very basic geographic model
in which all regions are imposed on a regular grid and uniformly pop-
ulated. Each node represents a region and all individuals in the region
are assumed to reside at the node. Lastly, our input variable X is
Boolean, i.e. each individual is assumed to be either sick or not sick.

Discussion 2. Is it problematic to ignore demographic bias? Why
or why not? Since it is extremely unlikely that a population would be
distributed equally among evenly-spaced nodes, discuss grid systems
that would more accurately reflect an actual population distribution
(could be based on either population density or distance). What kind
of issues are being ignored by considering the variable to be Boolean?

1.3. The basic procedure given by spatial scan statistics is as follows:
we pick what will be considered “centers”, in our case the nodes, and
construct discs about these nodes of varying radii. We consider every
disc of every radius possible. We then calculate a quantity called the
likelihood ratio for each of the discs. To find the most likely cluster,
we search through all possible candidate clusters in our space (discs),
calculate the likelihood ratio for each cluster, and report the largest.
This is what could indicate an outbreak.

Discussion 3. What do we mean by “all discs of all radii” (is this
possible)? How many is this? Does increasing the grid size by a
small amount alter the number of possible discs by a comparably small
amount?
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2. Mathematical Formulation of the Problem

2.1. Imagine you are flipping a fair coin n times. Recall that a simple
decision tree yields the formula probability of the coin’s landing on
heads or tails k times:

P (n, k) =
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k

n

)k (
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n

)n−k

where P (n, k) is the probability of obtaining k heads (or tails) in n
tosses of the coin. This is an example of a Bernoulli process, where
some random quantity that takes on either of two values (heads/tails)
is examined. Disease spread can also be modeled in this way (sick/not
sick). A similar calculation to that above leads to the formula for the
likelihood function on the disc D(n, r):

L(n, r) =
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where P is our total population, C is the total number of cases, p
is the population in the disc D(n, r), and c is the number of cases in
D(n, r). Note the similarity of this formula to the fractional terms in
the formula for the Bernoulli process. The binomial coefficient that
does not appear in the likelihood function exists in the Bernoulli for-
mula because it counts the number of possibilities of having k heads in
n tosses (i.e. the number of applicable branches in the decision tree).
This coefficient is not included in the likelihood function since we al-
ready have our data and are thus considering one particular outcome
(branch), rather than counting all the possible outcomes. Observe that
the multiplied ratios in the likelihood function represent, in order, the
proportion of cases within the disc, the proportion of non-cases within
the disc, the proportion of cases outside the disc, and the proportion
of non-cases outside the disc.

We now define the likelihood ratio for the disc D(n, r) as:

Λ(n, r) =
L(n, r)(

C
P

)C (
P−C

P

)P−C

where P,C are as above. Observe that the average number of sick
people, or the expected value of X, is C

P
. We only consider discs

for which the likelihood ratio is greater than the expected value by
setting Λ(n, r) equal to 0 otherwise. Finally, we identify the most
likely cluster by choosing the disc D(n0, r0) such that Λ(n0, r0) =
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max
n∈{nodes},r∈R+

Λ(n, r).

Some statistical observations about the likelihood ratio:
In terms of hypotheses, the likelihood function (the numerator of the
likelihood ratio) represents the maximum probability of the observed
event (the data collected) under the alternative hypothesis (that the
proportion of diseased in the cluster is higher than the expected value
over the entire region). The denominator remains the same for each
disc, and represents the probability of the observed result under the
null hypothesis (that the disease incidence in the cluster is equal to
the expected value). Thus, the likelihood ratio will be high when the
probability of a person’s having the disease is much higher within the
cluster than it is in general.

Note: In all of the examples and assignments below, we compute the
likelihood ratio and then take its natural log to obtain what we will
simply call its likelihood. We do this not only because it yields “nicer”
numbers, but because it is actually the case that the distribution of
the random variable −2 log Λ approaches a chi-square distribution.

Discussion 4. The likelihood function we picked was based on the
premise that a person either had the disease or did not have the disease.
We entirely ignored the possibility that a person could carry the disease
but not be infected. Consider how the likelihood function for differ-
ent models might change. For example, you may wish to direct your
students to the SatScan manual [K2] to view other likelihood functions.

Having defined likelihood ratio, our problem now reduces to straight-
forward optimization. In practice, of course, we cannot search through
every possible disc we could draw in our space. For our initial exam-
ples, recall we make the simplifying assumption that our clusters are
discs centered at the population nodes.

We begin with a ludicrously simple example. The fictitious state of
North Rectangula has twenty-five counties arranged in a perfect 5× 5
grid, each with a population of 500. See Figure 1. Rather than track
the exact location of every citizen, our model assumes that everybody
in each county is located at a single point (the centroid). In this exam-
ple the centroids of neighboring counties are spaced 100 miles apart.
Suppose County 13 (in the middle of the state) has 50 infected people,
and exactly one person in every other county is infected. Unsurpris-
ingly, the most likely cluster is the point (or, “disc of radius zero”) at
the centroid of county 13. If we set our coordinates so that County 1
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Figure 1. A simple cluster
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Figure 2. Find the most likely cluster

is at (100, 100), then the centroid of County 13 is at (300, 300). The
likelihood for this cluster is 117.7. If we increase the number of infected
in county 13 from 50 to 100, the likelihood increases to 272.1. For com-
parison purposes, it turns out that the cluster centered at (200, 200)
of radius 100 miles (thus including counties 2, 6, 7, 8, and 12) has
likelihood 5.2.

Exercise 1. In Figure 2, what is the likelihood for the cluster cen-
tered at (100, 100) with radius 50 miles? Assume that the coordinates
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are as in Figure 1, with distance between each node being 100 miles.

Exercise 2. How many different likelihood values are there in Fig-
ure 2?

Exercise 3. Find the most likely cluster in the configuration shown
in Figure 2 (recall that we assume the clusters are centered at the cen-
troid nodes). You may want to implement a spreadsheet to aid in the
calculations. Also, observe that it may not be necessary to compute
the likelihood for every cluster.

Exercise 4. (programming). Implement a näıve version of this
algorithm that exhaustively searches for the highest likelihood among
all clusters in a 3 × 3 grid. Assume all clusters are centered at the
nodes. You should choose an appropriate step size and maximal radius
in running your search.

3. Changing the geometry

3.1. Metrics. In our examples up until this point, we organized our
clusters in terms of the distances between the nodes. Specifically, we
used the Euclidean distance, which defines the distance between two or-

dered pairs (x1, y1) and (x2, y2) as d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.
Besides familiarity, there is no a priori reason to use this particular
function – is there something to be gained from trying something else?

Suppose u, v, and w are points in a set (in our case, coordinates on a
map). A metric is a function that reports the “distance” between two
such points, where “distance” is not necessarily the Euclidean distance
with which we are familiar, but rather can be any function that satisfies
the following properties:

(1) (identity of indiscernibles) d(v, w) = 0 if and only if v = w.
(2) (symmetric) d(v, w) = d(w, v).
(3) (triangle inequality) d(v, w) + d(u, v) ≥ d(v, w).

Exercise 5. Use properties (1)-(3) in the definition of a metric
to prove that if d is a metric then d(u, v) ≥ 0 for all u, v in the set.
(Combined with the identity of indiscernibles, this property is called
positive definite.)
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Exercise 6. Consider the function
d1((x1, y1), (x2, y2)) = 10

√
(x1 − x2)2 + (y1 − y2)2. Verify that this is

also a metric. Look at the previous examples, and interpret d1 as the
usual Euclidean metric with a change of units.

Now we will introduce something a bit more exotic. Consider the
set of ordered pairs (x, y) where x and y are integers. Instead of the
Euclidean metric, we define dt((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.
For example, dt((1,−2), (−5, 3)) = |1− (−5)|+ | − 5− 3| = 14. This is
called the taxicab metric because you may think of this as the metric
a taxi driver uses when driving around a perfectly gridded city. The
Euclidean metric is not quite appropriate because the driver cannot
cut diagonally through a city block.

Figure 3. Two shortest paths of length 12 in the taxi-
cab metric

One feature of this metric that distinguishes it from Euclidean ge-
ometry is that shortest paths are not unique. To get from (0, 0) to
(2, 2), one could move 2 units up the y-axis and then two units along
the x-axis, or instead one could go 2 units along the x-axis first and
then move two units up the x-axis. You could also go up one, right
one, up one, right one. All of these give paths that are four units long,
and there is no shorter route. See Figure 3.

Exercise 7. Verify that dt satisfies the definition of metric.
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Exercise 8. Sketch all shortest paths from (0, 0) to (3, 4) in the
taxicab metric.

Discussion 5. Compare the taxicab metric on the grid with the
comparable metric on the triangular lattice depicted in Figure 4.

Figure 4. A triangular lattice

We would also like to generalize our definition of a circle. If d is
any metric, r any non-negative number, and x0 is a point in our set
S, then define the circle of radius r and center x0 to be the set of
all points whose distance from x0 in the metric d is exactly r, or
{x ∈ S : d(x, x0) = r}. Similarly, a disc is the set of points whose
distance from x is less than or equal to r. (Technically, we should call
this the closed disc, to distinguish it from the open disc which includes
only points whose distance from x is strictly less than r.)

Exercise 9. Describe circles of radius zero in general. Prove your
answer.

Exercise 10. Describe circles and discs in taxicab geometry.

Exercise 11. How would you define an ellipse in the taxicab met-
ric? Sketch some examples. (For more fun with taxicab geometry, see
[Kr])

Exercise 12. Define dD on any set so that dD(x, y) = 0 if x = y
and dD(x, y) = 1 otherwise. Verify that this is a metric. What are the
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circles of different radii?

Exercise 13. Now suppose that dD is again defined on any set,
but that dD(x, y) = 1 if x = y and dD(x, y) = 0 otherwise. Is this also
a metric? If so, prove it. If not, which property(s) does it fail to satisfy
and why (give a counterexample)?

Exercise 14. Plot the function f(r) = the number of points in a
taxicab disc of radius r.

There is a qualitative difference between the Euclidean and taxicab
metrics in that the Euclidean metric works on a continuous space (the
plane) whereas the taxicab metric works on a discrete space (the integer
points). For example, consider how discs change in the two geometries
as the radius increases. In Euclidean geometry, the discs get bigger
and bigger continuously as the radius increases. In taxicab geometry,
however, we notice that the disc of radius zero is just a point, but so
are the discs of radius 1

4
, 1

2
, 3

4
, and so on until the radius is 1, when

suddenly four new points appear. The disc does not change again until
we hit the next integer.

It is also possible to interpret the Euclidean metric as discrete by
simply restricting the space to include only the integer points. That is,
the distance from (0, 0) to (2, 2) is still 2

√
2, but there are no points a

distance of exactly, say, 3.5 from (0, 0). Just as in the taxicab metric,
discs grow in sudden jumps rather than smoothly. If this feels familiar,
it may be because this exactly what we were doing when we explored
most likely clusters!

3.2. Airborne Hazard. On April 26, 1986, there was an explosion
at the Chernobyl nuclear power plant in the Ukraine. Radioactive ma-
terials were blown northward into Sweden and Finland. There was an
uneven dispersal of the fallout as winds and weather conditions initially
kept the dangerous materials away from Kiev. However, changing wind
and weather patterns spread clouds of radioactive substances through-
out Europe. Due to lack of information regarding the accident, panic
spread as certain foods were banned and there was a run on iodine
medicine used to combat the radioactivity [Gr]. Continued contamina-
tion in foods and forests were natural concerns as approximately 80%
of reindeer Sweden were destroyed due to high levels of caesium [R].
Also, incidences of thyroid cancer in Belarus rose dramatically with
over 4000 cases among those 0-18 years at the time of the accident,
having been diagnosed by 2002 [B].
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Figure 5. A Euclidean circle of radius 100

Suppose the disease now in question is airborne, and the winds of
North Rectangula tend to blow east-west. We would like to include this
information in our analysis. Consider the scenario pictured below in
which there are 50 cases in three horizontally connected counties (coun-
ties 12, 13, and 14) and negligible illness elsewhere. The most likely
cluster using the Euclidean metric includes our three high-incidence
counties, but the use of Euclidean circles precludes catching all three
without also including the two unwanted counties 8 and 18. See Fig-
ures 5 and 6.

We might have expected this sort of arrangement if we had thought
about wind tendencies. Anticipating east-west distributions, we may
adjust our metric as follows:

dew((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + 9(y1 − y2)2

For example, dew((0, 0), (100, 0)) = 100 whereas dew((0, 0), (0, 100)) =
300. The metric weights vertical distance more heavily than horizontal
distance. In this metric, the most likely cluster contains precisely the
three high-incidence counties, giving a higher likelihood than the Eu-
clidean cluster containing the two unwanted counties (likelihood 206.2
versus 149.8).

Exercise 15. Verify that dew is a metric in which the circles are
Euclidean ellipses whose vertical radii are one third of their horizontal
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Figure 6. In dew, the circle looks like a Euclidean ellipse.

radii.

Exercise 16. This example imposed the requirement that the hor-
izontal distance be scaled by a factor of three, but what if we wanted
more flexibility in the shapes of our ellipses? How would the result
change if the factor were four instead of three? How could we adjust
the spatial scanning algorithm to allow any ellipse as a cluster? Can
you anticipate any disadvantages to doing this?

3.3. Waterborne Disease. In 1849, John Snow began to look at
the geographical distribution of incidences of cholera to determine the
origin and spread of the disease [S]. He observed that doctors viewing
the bodies of victims after death did not seem to become infected with
cholera and he noted that they would carefully wash their hands after
such inspections. However, those in contact with water from washing
soiled linens seemed more likely to become infected [H]. He used this
and other arguments to hypothesize that the spread of the disease
was caused by bacteria in the water supply, i.e. that cholera was a
waterborne disease [S]. During the 1854 London cholera epidemic, he
was able to test this theory when he suggested removing a water pump
handle on Broad Street [T]. After this, deaths did decline, but it was
not clear that the epidemic subsided because of the removal of the
pump [Ko]. Nevertheless, by using geographical information, he was
able to make a connection between the water supply and cholera.
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Suppose we suspect that a given illness may be linked to a water
source such as a river which runs through our region. How could we
verify our conjecture? Can we develop a method to do so? We claim
that a simple adjustment to our spatial scan statistic procedure will
aid in this detection. We begin by re-evaluating our idea of “distance”,
i.e. we consider a different metric. However, we must be wary when we
do so not to induce false positives or false negatives. For example, if
the disease is not water-borne but there are cases of infection near the
river which cause our metric to include the entire river in a cluster, this
is a false positive. A false negative could be produced if the disease
is indeed water-borne but our algorithm fails to detect this due to
sporadic placement of the cases of infection along the river.

Discussion 6. Suppose South Rectangula has a river flowing through
it as in Figure 7. We are concerned about an outbreak of a waterborne
disease, and would like to adjust the clustering procedure to account for
increased disease spread for counties connected by water. How might
we do this?

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 7. South Rectangula

One approach to accounting for the river is to quotient out by the
river. This means that we consider all counties adjacent to the river
to be equivalent, the reasoning being that if an outbreak occurs in
one such county, then an outbreak will occur in the others. To define
this geometrically, we first define for any county x the function ρ(x) =
the shortest distance from x to any county on the river. Then for
any two counties x and y, define dr(x, y) to be either the Euclidean
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distance between x and y, or the sum ρ(x)+ρ(y), whichever is smaller.
For example, referring again to Figure 1, the distance from county 2
to county 3 is still 100, denoted dr(2, 3), but we also have dr(2, 4) =
dr(2, 19) = 100 because counties 3, 4, and 19 are all on the river and are
thus considered equivalent. It also follows that dr(2, 25) = 200 because
the shortest distance is obtained by traveling 100 miles from counties 2
to 3, then up the river at no cost to county 24, then another 100 miles
to county 25.

Notice that dr is not a metric on the set of counties because, for
example, dr(3, 4) = 0. It is a metric, however, if we consider the river
counties to be one large “super-county.” One way to picture this is
shown in Figure 8.

All
river

counties

1 52

6 107

11 1512

16 2017

21 2522

Figure 8. By “quotienting out” by the river, our dis-
tance measure treats all river-adjacent counties as equiv-
alent.

Exercise 17. Sketch the disc of radius one in dr about the coun-
ties 13 and 17.

Exercise 18. Determine if the distance function given by

dave = average{d(x, y), ρ(x) + ρ(y)}
is a metric.

Discussion 7. What disadvantages might there be to using this
approach in a real example?
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Exercise 19. Let X be a non-empty finite set with metric dX , let
S be any subset of X, and denote by X − S the set of all elements of
X that are not in S. Define the quotient metric on X − S by

dq(u, v) = min{dX(u, v),min
s,t∈S
{dX(u, s) + dX(v, t)}}.

Show that dq is a metric for X − S. What happens if S = X? What if
S is empty? Explore some intermediate cases.

Exercise 20. Use the methods in this section to analyze a grid
with the curved river depicted in Figure 9. Define the metric and sketch
all possible shapes of clusters.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 9. How can we account for a river with this shape?

Project 1. Recall that we made many unrealistic assumptions
in this model, for example, that population is uniformly distributed.
Explore how the model will change with the following variations:

• Vary the distance between nodes.
• Allow discs to be centered at locations other than nodes.
• Consider models with multiple water sources.

Project 2. (programming) Expand Exercise 1 to a more complete
spatial scanner. You might try including some of the following features:

• Allow larger, arbitrarily shaped grids.
• Use search algorithms to speed the cluster search.



Introducing Geometry With Spatial Scan Statistics 15

• Report the locations and likelihoods of several of the most likely
clusters.
• Allow the user to choose from a variety of metrics, or even input

his or her own.

Project 3. Use publicly available software such as SatScan (see
[K],[K2]) to reproduce as many of the examples in this module as you
can. Then see what you can do on some real biosurveillance data!

Project 4. In Section 3.3, we developed a metric that makes all
river-adjacent counties equivalent. How would we approach the prob-
lem if we want to reflect the effect of the river on disease spread, but we
do not want to go as far as to say all counties on the river are equiva-
lent. Begin by considering a model in which the distances between two
counties that are both on the river are halved (as opposed to zeroed).

Figure 10. The counties of Colorado

Project 5. Figure 10 a map of Colorado counties. Sketch the
graph corresponding to this map. It is no longer a nice, regular grid.
How does this impact the techniques developed in this module? Try
sketching clusters in this grid, and then try on other states. (Optional:
incorporate these grids into a spatial scanner, either one downloaded
from the internet or one developed in the exercises in this module.)

Project 6. Another approach is to allow the data to shape the
clusters. Explore [TT], [TYT] for a discussion and implementation of
this idea.
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Project 7. Have students choose an epidemic or outbreak and
research it from identification to discovery of cause(s). Discuss other
types of disease transmission and how identifying the mode of trans-
port, i.e. water, air, etc., may help curb the outbreak.

4. Selected Solutions

Exercise 1: This is the cluster consisting only of the node on in the
lower left-hand corner, as the nodes are distance 100 miles from each
other. The likelihood for this cluster is 4.41.

Exercise 2: There are 39 possible clusters (including the whole
map).

Exercise 3: The most likely cluster is the one that includes counties
3, 5, 6, and 9, so for example, the cluster centered at county 6 with
radius 100. This cluster has likelihood 25.66. Observe that although
counting only counties 3, 5, and 6 would yield a higher likelihood, using
Euclidean discs forces us to pick up county 9 as well.

Exercise 5: We have that 2d(u, v) = d(u, v) + d(u, v)
= d(u, v) + d(v, u) by the symmetric property
≥ d(u, u) by the triangle inequality
=0 by the identity of indiscernibles

Exercise 6: We show that the formula given by d((x1, y1), (x2, y2)) =

10
√

(x2 − x1)2 + (y2 − y1)2 forms a metric on R2.

(1) Identity of indiscernibles: Let v = (x, y). Then d1(x, y) =

10
√

(x− x)2 + (y − y)2 = 0.

Now suppose that v = (x1, y1) and w = (x2, y2), and that d1(v, w) =

10
√

(x1 − x2)2 + (y1 − y2)2 = 0. Dividing by 10 and then squaring both

sides yields (x1−x2)
2 +(y1−y2)

2 = 0, which implies that (x1−x2)
2 = 0

and (y1−y2)
2 = 0 since these two terms sum to zero. Thus, x1−x2 = 0

and y1 − y2 = 0, or x1 = x2 and y1 = y2 and thus v = w.

(2) Symmetric: Let v, w be as above. We then clearly see that

d1(v, w) = 10
√

(x1 − x2)2 + (y1 − y2)2 = 10
√

(x2 − x1)2 + (y2 − y1)2 =

d1(w, v) and d1 is symmetric.
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(3) Triangle Inequality: Again let v, w be as above and let u =
(x3, y3). We have that d1(u, v) + d1(v, w) =

= 10
√

(x3 − x1)2 + (y3 − y1)2 + 10
√

(x1 − x2)2 + (y1 − y2)2

= 10(
√

(x3 − x1)2 + (y3 − y1)2 +
√

(x1 − x2)2 + (y1 − y2)2)

≥ 10(
√

(x3 − x2)2 + (y3 − y2)2) by the triangle inequality on Euclidean
distance
= 10

√
(x3 − x2)2 + 10(y3 − y2)2).

Exercise 7: Verify that dt((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|
is indeed a metric.

(1) Identity of indiscernibles: Let v = (x, y). Then dt(v, v) =
|x − x| + |y − y| = 0. Now let v = (x1, y1) and w = (x2, y2), and
suppose that dt(v, w) = |x1 − x2| + |y1 − y2| = 0. Since |x1 − x2| ≥ 0
and |y1 − y2| ≥ 0 and the two terms sum to 0, we must have that
|x1−x2| = 0 and |y1− y2| = 0, or x1 = x2 and y1 = y2 and thus v = w.

(2) Symmetric: Let v, w be as above. Then dt(v, w) = |x1 − x2| +
|y1 − y2| = |x2 − x1|+ |y2 − y1| = dt(w, v) and dt is symmetric.

(3) Triangle Inequality: Again let v, w be as above and also let
u = (x3, y3). Then dt(u, v) + dt(v, w) =
= |x3 − x1|+ |y3 − y1|+ |x1 − x2|+ |y1 − y2|
≥ |x3 − x1 + x1 − x2|+ |y3 − y1 + y1 − y2|
= |x3 − x2|+ |y3 − y2|
= dt(u,w)

Exercise 9: Claim: A circle of radius zero is simply a point, specif-
ically the point at which the circle is centered.
Proof: Let C = {(x, y) ∈ R2 : d((x, y), (x0, y0)) = 0}, where d is any
metric. Clearly, the point (x0, y0) is in C since d((x0, y0), (x0, y0)) = 0
since d is a metric. Now let (x, y) ∈ C. Then d((x, y), (x0, y0)) = 0 and
again since d is a metric, we must have that (x, y) = (x0, y0). Thus,
C = {(x0, y0}.

Exercise 10:
By the definition of a circle, we know that a circle in the taxicab

metric of radius r and centered at the point (x0, y0) will be given by
the set C = {(x, y) ∈ R2 : |x − x0| + |y − y0| = r}. This is a square
rotated forty-five degrees from the coordinate axes. The disc contains
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the interior of this square.

Exercise 12: Proof:

(1) Identity of indiscernibles: It is clear by definition that dD(x, y) =
0 iff x = y.
(2) Symmetric: There are two cases. If x = y then dD(x, y) = 0 =
dD(y, x). If x 6= y then dD(x, y) = 1 = dD(y, x).
(3) Triangle Inequality: Let x, y, z be elements in our set.
Case 1: Suppose that x 6= y, z is arbitrary. We have that dD(x, y) +
dD(y, z) = 1+dD(y.z) = 2 if y 6= z and = 1 if y = z. In either case, the
result is greater than or equal to 1, which is the maximum magnitude
of dD(x, z).
Case 2: Now suppose that x = y, z is arbitrary. We have that
dD(x, y)+dD(y, z) = 0+dD(y, z) = dD(y, z). If x = z then dD(x, z) = 0
and the inequality holds. If x 6= z then dD(x, z) = 1 but also y 6= z
since x = y, so dD(y, z) = 1 = dD(x, z) and the inequality again holds.

We describe the circles and discs in the metric dD. Since dD only
takes on the values 0 and 1, our circles will either be of radius 0 (a point)
or of radius 1 (circles of all other radii will be the empty set). The circle
of radius 1 centered at the point x0 will include all points that are dis-
tance 1 from x0, or all points not equal to x0. Thus, it will be the entire
set (call it S) minus the center x0. There are two possible (closed) discs
centered at a given point x0, given by D0 = {x ∈ S : dD(x, x0) ≤ 0}
and D1 = {x ∈ S : dD(x, x0) ≤ 1}. D0 is again simply the point x0

(observe that this is also the open disc of radius 1), while D1 includes
all points which are either 0 or 1 unit away from x0. This includes both
x0 as well as all points not equal to x0, so this is thus the whole set S.

Exercise 13: This is not a metric, as it violates both properties (1)
and (3) (identity of indiscernibles and the triangle inequality). Prop-
erty (1) clearly does not hold since d(x, x) = 1 for any x in our set S.
For a specific counterexample to the triangle inequality, let S = {1, 2}.
Then dD(1, 2) + dD(2, 1) = 0 + 0 = 0 < 1 = dD(1, 1).

Exercise 15: Proof:
(1) Identity of indiscernibles: Let v = (x, y). Then dew(v, v) =√
(x− x)2 + 9(y − y)2 = 0. Now suppose that v = (x1, y1), w = (x2, y2)

and dew(v, w) = 0. We have that 0 =
√

(x1 − x2)2 + 9(y1 − y2)2, and

squaring both sides yields 0 = (x1 − x2)
2 + 9(y1 − y2)

2. Since the two
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terms sum to 0, we have that (x1 − x2)
2 = 0 and 9(y1 − y2)

2 = 0, or
x1 = x2 and y1 = y2 so v = w.

(2) Symmetric: Let v, w be as above. Then dew(v, w) =
√

(x1 − x2)2 + 9(y1 − y2)2

=
√

(x2 − x1)2 + 9(y2 − y1)2 = dew(w, v).

(3) Triangle Inequality: Again let v, w be as above and let u =
(x3, y3). Then dew(u, v) + dew(v, w) =

=
√

(x3 − x1)2 + 9(y3 − y1)2 +
√

(x1 − x2)2 + 9(y1 − y2)2

=

To consider the circle of radius r centered at (x0, y0) in this metric, we

let r = dew((x, y), (x0, y0)) which yields r =
√

(x− x0)2 + 9(y − y0)2.

Putting this into the standard equation for an ellipse we obtain r2 =

(x − x0)
2 + 9(y − y0)

2 or
(x− x0)

2

r2
+

(y − y0)
2

r2

9

. This is exactly an

ellipse centered at (x0, y0) whose vertical span is one-third that of its
horizontal span.

Exercise 16: We can change the vertical span by a factor of 4 rather
than 3 by replacing the 9 with a 16. In general, to obtain ellipses of
general but fixed radii we can simply fix the coefficients in front of
the squared factors in the distance formula. To allow the algorithm
to consider ellipses of any radii, we would need to consider all possible
coefficients (we would of course need to limit this to an appropriate
discrete set).

Exercise 17: See Figure 11

Exercise 18: This is not a metric, since for any x not located on the
river, dave(x, x) =average{d(x, x), ρ(x) + ρ(x)} =average{0, 2ρ(x)} =
ρ(x) > 0 since x is not on the river. Thus, dave is not a metric.

Exercise 19: Let u, v ∈ X − S.

(1) Identity of indiscernibles: dq(u, u) = 0 is straightforward. Sup-
pose 0 = dq(u, v) = min{dX(u, v),min

s,t∈S
{dX(u, s) + dX(v, t)}}. Then

either dX(u, v) = 0, in which case u = v, or there are s, t ∈ S such that
dX(u, s) + dX(v, t) = 0. Since both terms are non-negative, we have
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(a) County 13

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(b) County 17

Figure 11. Exercise: discs of radius 1

dX(u, s) = 0 and dX(v, t) = 0. Thus u = s and v = t, contradicting
u, v ∈ X − S.

(2) Symmetry is clear.

(3) Triangle inequality: let u, v, w ∈ X − S. We show dq(u, v) +
dq(v, w) ≥ dq(u,w). Without loss of generality, we have three cases.
Case 1: dq(u, v) = dX(u, v) and dq(v, w) = dX(v, w), and the re-
sult follows from the triangle inequality on dX . Case 2: dq(u, v) =
dX(u, v) and there exist s, t ∈ S such that dq(v, w) = dX(v, s) +
dX(w, t). Then dq(u, v) + dq(v, w) = dX(u, v) + dX(v, s) + dX(w, t)
≥ dX(u, s) + dX(w, t) ≥ min{dX(u,w), min

s′,t′∈S
{dX(v, s′) + dX(w, t′)}} =

dq(u,w). Case 3: There exist a, b, s, t ∈ S such that dq(u, v)+dq(v, w) =
dX(u, a)+dX(v, b)+dX(v, s)+dX(w, t) ≥ dX(u, a)+dX(b, s)+dX(w, t)
≥ dX(u, a) + dX(w, t) ≥ min{dX(u,w), min

s′,t′∈S
{dX(u, s′) + dX(w, t′)}} =

dq(u,w).
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