
1

DIMACS
Center for Discrete Mathematics &

Theoretical Computer Science

DIMACS EDUCATIONAL MODULE SERIES

MODULE 09-2

Finding Repeats Within Strings

Date Prepared: November, 2009

Dina Sokol

1

Department of Computer and Information Science

Brooklyn College of the City University of NY

Brooklyn, NY 11210

sokol@sci.brooklyn.cuny.edu

Frederick Adkins

Mathematics Department

Indiana University of Pennsylvania

Indiana, Pennsylvania 15705

fadkins@iup.edu

Zhongyuan Che

Department of Mathematics

Penn State University, Beaver Campus

Monaca, PA 15061

zxc10@psu.edu

Kristin Pfabe

Department of Mathematics and Computer Science

Nebraska Wesleyan University

Lincoln, NE 68504

kpfabe@nebrwesleyan.edu

DIMACS Center, CoRE Bldg., Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854-8018

TEL: 732-445-5928 • FAX: 732-445-5932 • EMAIL: center@dimacs.rutgers.edu Web:

http://dimacs.rutgers.edu/

Founded as a National Science Foundation Science and Technology Center and a Joint Project of Rutgers

University, Princeton University, AT&T Labs - Research, Bell Labs, NEC Laboratories America and

Telcordia Technologies with affiliated members Avaya Labs, Georgia Institute of Technology, HP Labs,

IBM Research, Microsoft Research, Rensselaer Polytechnic Institute, and Stevens Institute of Technology.

1
 This work has been supported in part by the National Science Foundation Grant DB&I 0542751.

mailto:sokol@sci.brooklyn.cuny.edu
mailto:fadkins@iup.edu
mailto:zxc10@psu.edu
mailto:kpfabe@nebrwesleyan.edu
http://dimacs.rutgers.edu/

2

Module Description Information

 Title:

Finding Repeats Within Strings

 Authors:

1. Dina Sokol, Brooklyn College of the City University of NY, Brooklyn, NY

11210, sokol@sci.brooklyn.cuny.edu

2. Frederick Adkins, Indiana University of Pennsylvania, Indiana, PA 15705,

fadkins@iup.edu

3. Zhongyuan Che, Pennsylvania State University Beaver Campus, Monaca, PA

15061, zxc10@psu.edu

4. Kristin Pfabe, Nebraska Wesleyan University, Lincoln, NE 68504,

kpfabe@nebrwesleyan.edu

 Abstract:

Genomic sequences often contain copies of patterns called repeats. Repeats

occurring in the genome are important genetic markers for disease diagnosis and

mapping studies, as well as for human identity testing. This module presents several

algorithms for finding repeats within biological sequences. Both tandem repeats, i.e.

repeats in which copies are contiguous, and non-tandem repeats are discussed.

Dynamic programming is described and a modification of the Smith-Waterman

algorithm is shown for finding non-tandem repeats with errors. Algorithms are

presented in pseudocode and illustrated with examples, including carefully

diagrammed matrices. Each algorithm is analyzed for its asymptotic time complexity,

motivating the selection of more efficient techniques. Several exercises and

suggestions for additional explorations are given. Finally, programs in C++ or Java

are included for the algorithms presented, and are available for running on the web at:

http://tandem.sci.brooklyn.cuny.edu/SWrepeats.

 Informal Description:

This module provides an introduction to several computational genomic techniques

within the framework of finding repeats within a sequence. It is designed for students

who are not necessarily experts in either biology or computer science. In Section 1

we describe some basic background in biology and the importance of repeats found in

biological sequences. In Section 2 we present two algorithms for finding tandem

mailto:sokol@sci.brooklyn.cuny.edu
mailto:fadkins@iup.edu
mailto:zxc10@psu.edu
mailto:kpfabe@nebrwesleyan.edu
http://tandem.sci.brooklyn.cuny.edu/SWrepeats

3

repeats within a sequence. Asymptotic time complexity is explained for the benefit of

those who are unfamiliar with “big Oh” notation. In Section 3 we discuss more

general repeats, allowing non-tandem repeats that include insertions, deletions, and

mismatches. We describe how dynamic programming is used to generate a 2-

sequence alignment using the Smith-Waterman algorithm. We then show how this

can be modified to find all repeats occurring in a sequence. Section 5 contains

additional exercises and Section 6 contains supplementary material including the

solutions to all of the exercises. C++ or java code is included for each algorithm in

the appendix.

 Target Audience:

Undergraduate students at the sophomore level or above in a computer science,

mathematics, or biology department.

 Prerequisites:

An introductory computer science class and familiarity with counting techniques is

required. In a computational biology course, this material would follow nicely after

coverage of the Smith-Waterman method for local alignment of two strings.

However, this presentation is self-contained and requires no specific background in

computational biology.

 Mathematical Field:

Computational Biology, Discrete Mathematics, Computer Science

 Application Areas:

Sequence analysis of biological sequences such as DNA, RNA and protein sequences

 Mathematics Subject Classification:

MSC (2010): 68W32, 68Q25, 92D20, 62P10

 Contact Information:

Dina Sokol, Brooklyn College of the City University of NY, Brooklyn, NY 11210,

sokol@sci.brooklyn.cuny.edu

 Other DIMACS modules related to this module:

None

mailto:sokol@sci.brooklyn.cuny.edu

4

Table of Contents

1 Introduction .. 5

1.1 Biological background and context .. 5

1.2 Repeats in DNA sequences ... 6

1.3 Overview ... 6

2 Tandem Repeats in Strings .. 7

2.1 Introduction ... 7

2.2 Brute force search algorithms ... 8

2.2.1 Algorithm 1 .. 8

2.2.2 Algorithm 2 ... 11

2.2.3 Pseudocode for Algorithms 1 and 2 ... 13

3 More General Repeats.. 14

3.1 Properties of general repeats ... 14

3.2 Scoring repeats .. 15

3.3 Algorithm for finding General Repeats .. 17

3.3.1 Dynamic Programming and 2-Sequence Alignment 17

3.3.3 Algorithm 3 in pseudocode – Compute the dynamic programming matrix 21

3.3.4 Illustration of Algorithm 3 ... 22

3.3.5 Trace-back for finding repeats ... 23

3.3.6 Overview for finding general repeats .. 30

4 Conclusion ... 32

5 Additional Exercises .. 33

5.1 Problem Listing ... 33

5.2 Hints and Solutions ... 33

6 Supplemental Material ... 40

6.1 Teacher’s Notes .. 40

6.1.1 Additional Definitions ... 40

6.1.2 Suggestions for Presentation of Material ... 41

6.2 Solutions to Numbered Exercises ... 43

7 Bibliography .. 49

Appendix – Source Code for Algorithms 1-4 ... 52

5

1 Introduction

1.1 Biological background and context

Deoxyribonucleic acid (DNA) resides in the nucleus of the cell of an organism. DNA

molecules encode the genetic information necessary for the function of the cell and they

control the inheritance of characteristics. Analysis of DNA can describe the relationship

between species and provide insight into inherited disease and progression of other

diseases.

The DNA is made up of a long, double-stranded helix. Each strand of the helix consists

of nucleotide bases of four types: adenine (A), cytosine (C), guanine (G), and thymine

(T). These four bases work together in complementary pairs across the double helix.

Adenine pairs with thymine and guanine with cytosine. To investigate the genetic

makeup of a DNA molecule, it is necessary to look at one strand of the double helix,

since the other strand is the complementary sequence of the first strand. That is, if one

strand begins ACTGA…, the other strand of the double helix starts TGACT… .

All of the DNA that an organism possesses is called the organism’s genome. The 3 billion

bp (base pairs) in the human genome are organized into 24 distinct, physically separate

microscopic units called chromosomes. The chromosomes contain the genes, the basic

units of heredity. The sequence of bases in the genes, also called the genetic code, is a

blueprint for the synthesis of protein molecules. Proteins are involved in almost every

biological function, and are sometimes called the “molecules of life.” For a primer on

molecular biology and protein synthesis, see:

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer/toc.html.

Analysis of the sequence of bases in DNA provides many insights into the biological

functions of a cell. In this module we discuss one specific aspect of sequence analysis,

namely the search for repeated sequences in a DNA sequence.

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer/toc.html

6

1.2 Repeats in DNA sequences

A pattern of nucleotides that occurs more than once in a sequence is called a repeat. Most

genomes have a high content of repetitive DNA. More than 50% of the human genome is

made up of repeats [HGP01]. Some relatively simple organisms like Amoeba dubia have

large areas of repeated sequences resulting in a much longer genome than other more

complex organisms such as Homo sapiens [R04]. On each chromosome of A. thaliana,
2

a small flowering plant, there is a region that is highly repeated in tandem (i.e.

contiguous) and this repetition accounts for 2-5% of its entire genome [LLDA03].

Repetitions in DNA arise and grow through molecular events that copy and insert DNA

segments in either dispersed or tandem sites. Repetitive DNA sequences are one of the

principle origins of genomic instability because recombination between similar sequences

can cause chromosomal rearrangements [LLDA03]. Repeats are important genetic

markers for disease diagnosis [SR95] and mapping studies, as well as for human identity

testing, sequence homology, and population studies. Repeats are found in both coding

and non-coding regions of DNA. Expansions of repeats found in the protein-coding

portions of genes can affect the function of the gene by causing synthesis of

malfunctioning proteins. Repeats in non-coding regions have been shown to affect

biological processes by affecting gene expression, transcription and translation.

1.3 Overview

Section 2 discusses techniques for finding tandem (i.e. contiguous) repeats in a sequence.

A modification of the Smith-Waterman method for sequence alignment is used to find

more general repeats in Section 3. The material in these two sections provides an

introduction to computational genomic techniques; it is designed for students who are not

necessarily experts in either biology or computer science, but have taken at least an

introductory course in computer science. Algorithms are clearly presented, with carefully

diagrammed matrices illustrating the computational steps on sample inputs. The

2
 The genome of A. thaliana is one of the smallest plant genomes and was the first plant genome to be

sequenced. Thus it has been used for understanding the molecular biology of many plant traits.

7

algorithms are analyzed for computational complexity, motivating the search for more

efficient techniques.

2 Tandem Repeats in Strings

2.1 Introduction

There are many types of repeated strings of biological interest. Repeats that occur at

contiguous locations are called tandem repeats and they have special significance for

biologists. Tandem repeats in human DNA are responsible for over 30 inherited diseases,

including fragile X syndrome, myotonic dystrophy, Huntington's disease, various

spinocerebellar ataxias, Friedreich's ataxia, and others [C92, GZ05, M08]. In a normal

gene, there is a stable threshold for the copy number of a repeat, while in individuals in

which the copy number exceeds the threshold the disease is manifested. For instance, in a

normal FMR-1 gene, the triplet CGG is tandemly repeated 6 to 54 times, while in patients

with fragile X syndrome, the pattern occurs more than 200 times.

The tandem repeats in the human genome are the genetic markers used in DNA forensics

[J93a, J93b]. Since the number of adjacent copies varies from individual to individual,

the copy number of a tandem repeat can be used to identify an individual, and relations

such as parent or grandparent. Tandem repeats are also used in population studies

[UW93], conservation biology [SH02], and in conjunction with multiple sequence

alignments [B97, K96].

To begin the discussion of repeats, the problem is constrained to the special case of

finding tandem repeats with exactly two copies. In order to narrow the initial focus of the

search for repeats even further, only repeats that are exact, i.e., ones with no errors in the

copies of the repeats, will be considered. Formally, an exact tandem repeat is defined as a

nonempty string that can be divided into two identical substrings; i.e., if v is a nonempty

string, then vvr is a tandem repeat. The size of a tandem repeat r , denoted by |r|, is

the number of characters in it, and its period is |v|. Note that the size of a tandem repeat is

two times its period.

8

For example, the string GTCAACAATC has three tandem repeats: AA, AA and

CAACAA. The size of AA is 2, with period 1, and the size of CAACAA is 6, with

period 3.

In this section, we’ll try to find tandem repeats in strings.

Exercise 2.1: Find all tandem repeats in GTTGTTGTTGTT and list the size and

period of each.

Exercise 2.2: A counting problem:

(a) How many tandem repeats are in the string AAAAAA?

(b) How many tandem repeats are in the string AAAAAAA?

Exercise 2.3: How can we redefine tandem repeats in a way that we are left with

fewer repeats (for example, in Exercise 2.2, one repeat would be listed) that

succinctly represent all repeats within a string?

2.2 Brute force search algorithms

Problem: Given a string S of length n, find all exact tandem repeats that are substrings

of S.

2.2.1 Algorithm 1

Consider every even length substring of the given string S. Partition each substring of

even length into two equal-length substrings. Compare the substrings to see if they

match.

Example: Consider AGCGCTT.

The even length substrings are AG, GC, CG, GC, CT, TT, AGCG, GCGC,

CGCT, GCTT, AGCGCT and GCGCTT. GCGC is a tandem repeat because GC

and GC match. AGCGCT is not a tandem repeat because AGC and GCT do not

match. The only tandem repeats are TT and GCGC.

9

Complexity Analysis

Suppose that)(nf is the computing time (loosely speaking, the computing time is the

number of steps to perform a task) to run the algorithm on a string of length n. We

would like to express, in a simple manner, the asymptotic size of)(nf for large n . For

this, we introduce “Big Oh” notation.

Definition: We say that))(()(ngOnf if there exist positive constants c and k such

that)()(0 ncgnf for all kn . This is read “ f is big Oh of g ”.

Example:

Show that)(26)(22 nOnnnf . Since
22222 92626 nnnnnn

for 1n ,)()(2nOnf . Here, our constants are 9c and 1k . Notice that

we did not provide the tightest bound. In fact, one can also show that 22)(nnf

for 7n . So it’s not important which constants c and k you find. What is

important is the existence of such constants. We have shown that

)(26)(22 nOnnnf . In fact, it is true that)()(pnOnf for any 2p .

Exercise 2.4: Suppose that)()(2nOnf and)()(3nOng . Show that

)())((3nOngf .

Many functions that model computing time are polynomials, and if f is a polynomial of

degree p , then)()(pnOnf . For example,)(364)(55 nOnnnf and

).1(6)(Ong

Additional exercises:

Exercise 2.5: Show that)(! nnOn .

Exercise 2.6: True or False: If))(()(ngOnf , then))(()(nfOng . (If you

answer True, you must provide a proof. If you answer False, you must provide a

counterexample.)

10

Basic Counting Principles

For our analysis of the computing time of algorithms, it will be helpful to understand

some counting principles. How many ways are there to arrange 2 items from a collection

of n items? There are n possibilities for selecting the first and 1n for the second. Thus,

there are)1(nn ways to arrange these items. Now, suppose you don’t care about how

they are arranged and you just want to know how many groups of 2 items from a

collection of n items you can form. As an example, ab and ba are different arrangements

of the letters a and b, but they are the same sets of letters. Thus)1(nn is too big by a

factor of 2, and therefore the number of groups of 2 items from a collection of n items is

2/)1(nn . These groups of unordered items are called combinations. The notation

)2,(nC denotes that number of combinations of n items taken 2 at a time. An alternate

notation is
n

2
. We have discovered that

n

2

n(n 1)

2
.

Getting back to finding all exact tandem repeats that are substrings of a string of length n,

let’s find our algorithm’s order. First we need to determine the number of substrings of

even length. Each substring is determined by a left and right endpoint. The total number

of substrings of length greater than 1 is)(2/)1(2nOnn . The total number of even

length substrings is about half of this,)(4/)1(2nOnn . For each even length

substring, you must divide it in half and compare the two halves. This step takes no more

than)(2/ nOn character comparisons since the longest half to compare has length
n

2
.

Thus the total computing time for this algorithm on a string of length n is approximately

)(
24

)1(3nO
nnn

.

In this method, there are many repeated comparisons of the same pairs of characters.

Consider the substring (i,j) and the substring (i+1,j+1), both of which have the same size.

This motivates us to search for an algorithm that takes less time.

 i i+1 j j+1

11

In the next exercise, we’ll apply our notion of combinations to the counting problem

mentioned in Exercise 2.2.

Exercise 2.7: A counting problem, revisited:

(a) Compute the number of tandem repeats in the string AAAAAA using

combinations. Hint: alternately place two characters, say / and $ between

each A, and at the beginning and end of the string. This gives us

/AA/AA/A$A/. Consider how choosing two of the same character relates

to tandem repeats.

(b) Apply your technique in part (a) to compute the number of tandem repeats

in the string AAAAAAA?

(c) Let A
n
 denote the string of n consecutive A’s. How many tandem repeats

are in the string A
n
?

2.2.2 Algorithm 2

If we compare the string with shifted copies of itself, we can identify tandem repeats in

less time. To find all repeats of size i2 , line up the original sequence with the sequence

shifted by i characters to the right. Check the alignment for matching substrings of

length i .

Example: Suppose we want to find tandem repeats in the string ABCECEFFG.

(Note that this is not a genomic sequence.) To find all tandem repeats of size 2, shift

the full sequence by one to see where there are matches. In the table below, we find

that “FF” is a tandem repeat of size 2.

To find all tandem repeats of length 4, shift the full sequence by 2. In the table, one

finds that “CECE” is a repeated sequence.

A B C E C E F F G

 A B C E C E F F G

12

Complexity Analysis:

First note that a tandem repeat can have size no greater than n , so there are no more than

2/n shifts. For each shift there are no more than n comparisons. So the computing

time of the algorithm is approximately)(
2

2nOn
n

.

Notice that in this algorithm we are matching the same string with itself at every possible

shift. Information from previous shifts can be used to speed up the computations at each

new shift using standard pattern matching techniques. This yields much more efficient

algorithms. The best known algorithm for finding exact tandem repeats (with any number

of copies) has linear time ()(nO time) and was developed by Kolpakov and Kucherov

[KK99].

Exercise 2.8: A multiple tandem repeat is a tandem repeat that contains two or more

copies. A string r is a multiple tandem repeat of period |v| if it can be partitioned into

n+1 substrings, the first n substrings being identical, say v, and the last substring

being a (possibly empty) prefix of v. Formally, 2,' nvvr n
, 'v is a (possibly

empty) prefix of v. For example, ACTACTACTAC is a multiple tandem repeat with

period 3, and size 11. Can you develop a brute force method for finding multiple

tandem repeats? Show how your algorithm works using the input string

ATATATATGC.

Exercise 2.9: The Hamming distance between two strings of equal length is defined

as the number of mismatching characters between the two strings. For example, the

Hamming distance between AGCTA and ACCTT is 2. Propose an algorithm for

finding approximate tandem repeats, i.e. repeats in which there are two “copies” of

the repeat, but mismatches between the “copies” are allowed. Specifically, find all

approximate tandem repeats vvr , where |||| vv , and the Hamming distance

between v and v is less than k, for some given integer k.

A B C E C E F F G

 A B C E C E F F G

13

2.2.3 Pseudocode for Algorithms 1 and 2

The input and output for Algorithms 1 and 2 are as follows.

Input: A string S of length n. (We assume that the characters are numbered 1…n.)

Output: All tandem repeats in S.

Algorithm 1

len=2;

while len <= n do // len stands for the length of the substring being checked

 // for tandem repeats

 begin

 p=len/2; // p stands for the period of the repeat

 for (i=1 to n-len+1) do

 begin

 // compare contiguous substrings of length p, one starting at position i,

 // the other starting at position i+p

 if (S[i…i+(p–1)]==S[i+p…i+(len–1)])

 report repeat of size len beginning at location i.

 end // for i

 len=len+2;

 end // while

Algorithm 2

match=0;

for p = 1 to do // p stands for the period of the repeat

 begin

for i=1 to n-p do // for each i, check whether a repeat ends at location i+p

 begin

 if (S[i] == S[i+p])

 begin

14

 match=match+1; // count how many consecutive characters match

 if (match >= p)

 report a repeat of length 2p beginning at location i – p+1.

 end // if S[i]==S[i+p]

 else // this character does not match, begin again

 match=0;

 end // for i

end // for p

3 More General Repeats

3.1 Properties of general repeats

One reason for comparing DNA sequences is to find evidence that they come from a

common ancestor. Through the mutation process, insertions, deletions and transcription

errors change the sequence.

We will now classify more general repeats, having one or more of the following

properties:

1. Copies of a repeat may be non-contiguous (i.e. non-tandem). (e.g. ABFGAB)

2. Copies of a repeat may be overlapping. (e.g. in ABCABCAB, ABCAB is

overlapped with ABCAB)

3. Copies of a repeat may contain errors, such as mismatches, insertions and

deletions. (e.g. GTCAGTCC with a mismatched character or GTBCGTC

with a missing character) Usually the number of errors allowed is much

smaller than the length of the repeat.

A general repeat may fall into more than one of these categories. For example, in the

string AGCTCTGAA, the substring CTC overlaps CTG, and this repeat has errors.

Exercise 3.1: Find twenty (or more) general repeats in GCGAGAGACGCC.

15

Remark: Although we are discussing general repeats, we are still only allowing exactly

two parts to each repeat. Multiple repeats are even more general, allowing several copies

within a given repeat. More discussion of multiple (tandem) repeats is included with the

exercises of Section 2.

3.2 Scoring repeats

Consider the string BEERBEAR, which has more than one general repeat. Observe these

two repeats: BEERBEAR and BEERBEAR. Which one is “better”? In order to answer

this, one must introduce a scoring function, which will calculate a score for a given

repeat. We can then compare the scores of two different repeats, and the one with the

higher score will be considered better. We introduce the following scoring function:

when comparing a repeat character by character, a character match increases the score by

1 and a mismatch decreases the score by 2. With the repeats seen in BEERBEAR, we

match the substrings BE and BE to get a score of 2. For BEERBEAR, we match BEER

and BEAR to get a score of 1. With the given scoring scheme, BE is the better repeat of

the two given.

Exercise 3.2: Use the scoring function in which a match increases the score by 2 and

a mismatch decreases it by 1 to rescore the two general repeats BEERBEAR and

BEERBEAR.

Due to chemical properties of DNA bases, mismatches between certain pairs of bases are

more likely to occur. Specifically, an A can easily be replaced with a G, and a C can

easily be replaced with a T. In text processing, an assumption of all mismatches being

equally likely is also nonrealistic. For example, it is more likely to mistakenly replace a

vowel with another vowel. Thus, we would want to score vowel mismatches with less of

a penalty than consonant mismatches. This would require a weighted scoring scheme, in

which the score depends upon the particular characters that mismatch.

Exercise 3.3: Modify the prior scoring scheme to one where each exact match

increases the score by 2, each mismatch of two vowels decreases it by 1/2 and each

mismatch of two consonants or consonant with vowel decreases it by 2. Use this

scheme to rescore the two general repeats BEERBEAR and BEERBEAR.

16

A scoring function can also be viewed as a matrix, in which each location contains the

score between the character on top and the character on the left. The following matrix

represents a scoring function for the four DNA bases. Note that the penalty (or negative

score) given for a mismatch between the purines (A and G) and pyrimidines (T and C), is

less than the penalty for mismatches between a purine and a pyrimidine.

 A C G T

A 2 -1 1 -1

C -1 2 -1 1

G 1 -1 2 -1

T -1 1 -1 2

Exercise 3.4: Use the above matrix to compute the score for the following two

repeats: AACGTAACCA and AACGTGGCGT. Explain why a different score

was achieved for these two repeats, even though they both have 3 matching

characters.

The discussion up until now included only matching and mismatching characters. As

mentioned in property 3, Section 3.1, a general repeat may also contain errors in the form

of deletion or insertion of bases. In the alignment of the copies of a repeat, an

insertion/deletion is represented by a “gap” character (-). To illustrate this idea, we will

align FEAR and FAR by inserting a gap in FAR.

FEAR

F–AR

In order to score this alignment, we need to introduce a scoring scheme that accounts for

gaps. We use the scoring function in which a match increases the score by 1, and a

mismatch or gap decreases the score by 2. Obviously, we do not allow a gap in one string

to align with a gap in the other string. The score of the FEAR and F–AR alignment is 1.

Henceforth, we denote the scoring function by s(a,b). For each application, s(a,b) must be

given, and it must assign a value, or “score,” to each possible pair in an alignment,

including all pairs of characters, as well as each character against a gap. To obtain the

score of a 2-sequence alignment, we sum over the scores of all pairs in the alignment.

17

The scoring function may differ for different applications. In the above example the

scoring function used was: s(a,a)=+1, s(a,b)=s(a,-)=s(-,a)=-2 (for all characters a,b in

the alphabet, ba).

Exercise 3.5: Use the scoring function: s(a,a)=+1, s(a,-)=s(-,a)=-2, s(a,b)=-1 (for

all characters a,b in the alphabet, ba). For the two sequences SOME and

SCORE, find the alignment that produces the greatest score. In other words, you will

find an optimal 2-sequence alignment.

In Section 3.4 we include a more advanced scoring scheme which allows gaps and is

weighted according to the purines and pyrimidines. For this section, we use a simplified

scoring function, to ease the exposition of the algorithms. The simplified scoring function

allows gaps but does not weigh for purines and pyrimidines.

3.3 Algorithm for finding General Repeats

The algorithm for finding general repeats is a direct modification of the Smith-Waterman

(SW) algorithm for the local alignment of two sequences [W95]. Since understanding the

SW algorithm is critical for understanding the algorithm for general repeats, we briefly

describe the SW algorithm. Classes that covered the SW algorithm as part of the topic of

sequence alignment may omit Section 3.3.1.

3.3.1 Dynamic Programming and 2-Sequence Alignment

Dynamic programming is a method of solving a problem, in which solutions to

subproblems are stored in a table. Solutions to larger subproblems are calculated from

previous values in the table. A very simple example of dynamic programming, in one

dimension, would be to compute the nth Fibonacci number by completing an array of size

n+1 (say Fib[0...n]). Initially, Fib[0] is set to 0, and Fib[1] is set to 1. Each entry, Fib[i]

for i≥2, is computed from the two previous entries, by the formula:

Fib[i] = Fib[i-1] + Fib[i-2]. In this section we describe a dynamic programming algorithm

in two dimensions in which an optimal 2-sequence alignment is obtained for two given

sequences.

18

A 2-sequence alignment is a way of arranging two sequences of DNA or proteins to

identify similarities between the sequences. Typically, a scoring function assigns a score

to each pair of residues (which are represented as characters in the computational model).

A residue matching with a gap (-) is assigned a penalty score, and the score of the

alignment is defined as the sum of the pairwise scores. The goal is to align the two

sequences in a way that maximizes the score of the alignment. A global sequence

alignment optimizes the alignment of the two entire sequences. A local sequence

alignment attempts to optimally align subsequences of the input sequences.

For example, given a simple scoring function of s(a,a)=1 for all characters a, and –1

otherwise, the following is the global and local alignment of the two sequences

TGGTATGCC and TTATCCG.

Global Sequence Alignment:

TGGTATGCC-

T--TAT-CCG

score=2

Local Sequence alignment (shown in Bold characters):

TGGTATGCC

 TTAT-CCG

score=4

Given two sequences, P of length n and Q of length m, over some alphabet, a scoring

function s(a,b) over all symbols in the alphabet, and a gap penalty s(a,-) for each symbol,

the Smith-Waterman [SW81] algorithm computes the optimal local alignment between P

and Q in O(nm) time. The algorithm uses dynamic programming to compute an n x m

matrix, M, as follows. Initially, M[i,0]=0 and M[0,j]=0. The rest of the entries in M are

computed row-by-row, from left to right using the following formula. The goal is to

maximize the value of each cell of M.

19

0

),(]1,[

),(],1[

),(]1,1[

max],[
j

i

ji

qsjiM

psjiM

qpsjiM

jiM

Following, we show the matrix M for the two strings and the scoring function considered

in the above example. Let P=TGGTATGCC and Q=TTATCCG. The string P is placed

on the left of the matrix, labeling the rows, and Q is placed on top, labeling the columns

of the matrix. (We use i to index P and j to index Q.)

INDEX j 0 1 2 3 4 5 6 7

i Q= T T A T C C G

0 P= 0 0 0 0 0 0 0 0

1 T 0 1 1 0 1 0 0 0

2 G 0 0 0 0 0 0 0 1

3 G 0 0 0 0 0 0 0 1

4 T 0 1 1 0 1 0 0 0

5 A 0 0 0 2 0 0 0 0

6 T 0 1 1 1 3 2 1 0

7 G 0 0 0 0 2 2 1 2

8 C 0 0 0 0 1 3 3 2

9 C 0 0 0 0 0 2 4 3

After the initialization of the first row and column to zeros, each M[i,j] is determined by

looking at 3 neighboring cells: the previous one on the diagonal, M[i-1,j-1], the one

above, M[i-1,j], and the one to the left, M[i,j-1]. We summarize the meaning of each of

these actions in terms of the alignment:

(1) Come from the “diagonal:” Align the character at position i of P with the

character at position j of Q.

(2) Come from “above:” Insert a gap in Q (i.e. align – with pi).

(3) Come from the “left:” Insert a gap in P (i.e. align – with qj).

(4) If all three possibilities are negative, then M[i,j] is reset to 0, allowing a new start

20

of a local alignment.

For example, consider location M[6,4] in the above matrix. The maximum comes from

adding s(T,T)=1 to the value 2 on the diagonal. The value in M[6,5] is calculated by

subtracting 1 from M[6,4].

In the Smith-Waterman algorithm, the goal is to maximize the value of each cell of M.

Upon completion, the maximum value in M corresponds to the optimal local alignment.

In fact, due to the optimal substructure property of dynamic programming, the value of

each entry M[i,j] represents the score of the optimal alignment of a subsequence of P

ending at pi and a subsequence of Q ending at qj . By tracing back the path that resulted in

the computation of the maximum value, the optimal local alignment of the two strings

can be obtained. Since M[9,6]=4 is the largest value in the matrix in our example, the

optimal local alignment ends at p9 and q6 , and it is as follows.

Optimal Local Sequence alignment of P and Q:

p4…p9: TATGCC

q2…q6: TAT-CC

Note that there are many other possible alignments ending at p9 and q6, however, M[9,6]

gives the highest score of all such alignments.

Since this module concentrates on finding repeats within sequences, we describe the

trace-back method in detail in the next section in the context of repeats.

Note: The Smith-Waterman algorithm for local alignments is a modification of the

Needleman and Wunsch [NW70] algorithm used for global alignments. The key

differences in the algorithms are in the initialization of the first row and column, and in

the inclusion of zero in the definition of M[i,j]. We refer the reader to an excellent text by

Jones and Pevzner [JP04] for more detail.

3.3.2 Using Dynamic Programming to find Repeats

To motivate the use of dynamic programming, let us first think about a brute force

21

method that would attempt to locate general repeats. One could take each subsequence of

the sequence and try to align it with every other subsequence, looking for alignments

with large scores. This is an extremely expensive method of finding repeats. In fact,

since a local alignment of all possible pairs of substrings is necessary, this would yield a

O(n
6
) time algorithm. (There are O(n

2
) substrings, all possible pairs of substrings gives

O(n
4
), and each alignment allowing gaps costs O(n

2
).) However, it turns out that a

modification of the SW method for local alignment can be used exactly one time to locate

all repeats within a string. Since we are filling in an n x n matrix, this method has time

and space O(n
2
).

The idea is to align the sequence with a copy of itself, and compute the best possible local

alignment ending at every possible point. A matrix is built by placing copies of the given

string to the left and above as shown for AACTAAT in Figure 1.

The modifications to the dynamic programming matrix for finding repeats are:

(1) place the string S both on the top and to the left of the matrix to align the string with

itself,

(2) set all elements on the diagonal of the matrix to 0 to avoid aligning characters with

themselves,

(3) compute only the upper triangular matrix (M[i,j]=M[j,i] since both strings are

identical).

Specifically, given a string of length n, we compute the upper-right portion of the n x n

matrix M using Algorithm 3, given in pseudocode in the next subsection. We sometimes

refer to the string on the left of the matrix as the “left” string, and the string on the top of

the matrix as the “top” string. Of course, both of these strings are identical.

3.3.3 Algorithm 3 in pseudocode – Compute the dynamic programming

matrix

Input: A string S = x1,…,xn, and a scoring function s(a,b) defined on all characters in the

alphabet, and a gap penalty s(a,-),s(-,a) defined over all characters in the alphabet.

Output: The upper right part of an n x n matrix M, containing the scores of the local

alignments of the string S with itself.

22

Algorithm 3 - BuildMatrix

for i=0 to n

 begin

 M[0,i]=0; // initialize first row

 M[i,i]=0; // initialize diagonal

 end

for i=1 to n

 for j=i+1 to n

 M[i,j] = max{M[i-1,j-1]+s(xi,xj), M[i-1,j]+s(xi,-), M[i,j-1]+s(-,xj), 0}

3.3.4 Illustration of Algorithm 3

The matrix in Figure 1 is the result of running Algorithm 3 on the input string

AACTAAT. The following scoring function was used:

otherwise 1

 if 1
),(

ba
bas 1),(),(asas

where a and b are any of the characters in the alphabet and – represents a gap.

Note that only the upper-triangular portion of the matrix is filled in. It’s important to

place 0’s on the diagonal to avoid matching the string with itself, a trivial repeat.

 0 1 2 3 4 5 6 7

 A A C T A A T

0 0 0 0 0 0 0 0 0

1 A 0 1 0 0 1 1 0

2 A 0 0 0 1 2 1

3 C 0 0 0 1 1

4 T 0 0 0 2

5 A 0 1 1

6 A 0 0

7 T 0

Figure 1 – Matrix M aligning the sequence with itself.

23

Figure 2 describes how to fill cell (4,7). Suppose the values in cells (3,6), (3,7), and (4,6)

are already known as shown in Figure 1. If we are computing the value in cell (4,7) we

must consider the possible contributions marked by the arrows to the cumulative scores

in the other cells. The vertical arrow contributes -1 to the score from (3,7) as it reflects

insertion of a gap in the top string (specifically, following the T at position 7). The

horizontal arrow contributes -1 to the score from (4,6) as it reflects insertion of a gap in

the left string (following the T at position 4). The diagonal arrow reflects matching T (at

position 4 in left string) with T (at position 7 in top string). It contributes +1 to the score

from (3,6) and yields the maximum of 2 when calculating 7),4(M .

 6 7

 A T

3 C 1 1

4 T 0 2

Figure 2 – Calculating the score for cell M[4,7].

3.3.5 Trace-back for finding repeats

Once the matrix is filled, it is necessary to retrieve the actual repeats. Recall that the (i,j)

entry in the matrix M is the score of the best local alignment(s) ending at the pairing

),(ji xx . (Remember, there could be gaps following xi or xj, but not both.) Thus, the

largest entries in the matrix represent the highest scoring repeats. We locate the largest

element in the matrix to retrieve its repeat. If there is more than one entry with the max

value, we arbitrarily choose one of these entries. To retrieve the alignment of the repeat,

we will use what is called the “trace-back” method. The traceback method traces the path

that resulted in the computation of the maximum value. The traceback always ends at a

location in the matrix with the value 0.

In our matrix, we see that the largest scores are in the (2,6) and (4,7) positions. Let’s

focus on the 2 in the (4,7) position and determine where this came from. The 2 came

-1

-1

 +1

24

from an entry in one of the three positions, (3,6) (from the diagonal entry), (3,7) (from

above) or (4,6) (from the left). We can rule out both (3,7) and (4,6) because a cell to the

left or above (4,7) can only decrease the score of (4,7), and the entry in (4,7) is larger

than those in (3,7) and (4,6). So the entry in position (4,7) came from (3,6). Let’s

reconstruct the alignment of the repeats from right to left, one character at a time.

In the following diagrams, TopIndex refers to the index into the top string, and TopString

refers to characters from the top string. The same is true for LeftIndex and LeftString.

The rightmost pair in the alignment is:

TopIndex 7

TopString T

LeftString T

LeftIndex 4

The next step is to determine where the entry in position (3,6) came from. It came from

either (2,5), (2,6) or (3,5). It could not have come from (3,5) because moving

horizontally decreases the score because of the gap penalty. It could not have come from

the (2,5) entry because we had a mismatch and so if we had gone diagonally, this would

have produced a 0 in the (3,6) position. Hence, location (3,6) was calculated from above,

location (2,6). A vertical move corresponds to inserting a gap in the string on the top

(since we are “consuming” a character on the left, but not on the top). This gives the

second to last pair in the local alignment as follows.

TopIndex 7

TopString – T

LeftString C T

LeftIndex 3 4

We continue in this manner, resulting in the following – alignment. The process

terminates when a 0 is reached, in this case at location (0,4).

25

TopIndex 5 6 7

TopString A A – T

LeftString A A C T

LeftIndex 1 2 3 4

Figure 3 shows the traceback path shaded in the matrix M.

Let’s check our work by scoring our repeat:

#matches – #mismatches – #gaps = 2103 .

 0 1 2 3 4 5 6 7

 A A C T A A T

0 0 0 0 0 0 0 0 0

1 A 0 1 0 0 1 1 0

2 A 0 0 0 1 2 1

3 C 0 0 0 1 1

4 T 0 0 0 2

5 A 0 1 1

6 A 0 0

7 T 0

Figure 3: This is the matrix M shown in Figure 1 with the traceback path of the optimal

local alignment shaded.

Comment: If you change the scoring function, you may get a different “best” repeat

alignment.

We have found a best scoring repeat. Notice that the one found happened to be a tandem

repeat. Suppose now that you want to find other interesting repeats. The obvious thing to

do would be to get the next largest value in the matrix (or another occurrence of the max),

and trace it back, as we did above. However, we do not want to report any part of the

26

repeat that was already found. For example, we don’t want to report the repeated strings

AA in positions 1, 2 and AA in positions 5,6. In other words, we want to restrict

matching parts of the found repeat from being included in subsequent repeats. Therefore,

we cannot simply take the next largest number in the matrix (or possibly another

occurrence of the max) and trace it back because that might pick up portions of the

alignment of the first repeat that was already found.

The solution is to adjust the values in the matrix that were affected by the matching

characters in the found repeat. Specifically, we adjust all values on the path of the found

repeat, and all values that were computed from a value on the path. This process of

adjusting the entries must start at the beginning of the path. Note that the path producing

the highest scoring repeat consists of the cells in order: (0,4), (1,5), (2,6), (3,6), (4,7).

That is, the reverse of the traceback arrows in Figure 5.

The adjustment to the matrix is done in two phases. In phase 1, we shade the cells that

will need to be recomputed. In Figure 4, the region that must be adjusted is shaded. The

cells that have dark shading are on the actual path of the repeat (excluding the first cell

with the zero value). The lightly shaded cells are those affected by the path of the highest

scoring repeat, i.e. their values have been computed from either a value on the path, or

another lightly shaded cell. In case of a tie, where a value can be computed from a non-

shaded cell or from a shaded cell, it is not necessary to shade the cell. For example,

consider the 0 in cell (4,6). It could come from the 1 above in darkly shaded cell (3,6) (on

path) or from the zero in the formula M[4,6] = {M[3,6]-1, M[4,5]-1, M[3,5]-1, 0}. Hence,

we do not shade cell (4,6).

The procedure to perform the shading begins with the second cell of the path and works

row-by-row from left to right. Each row begins under the previous row’s leftmost shaded

cell (light or dark). Dark shading is done to every cell on the path. A cell is lightly shaded

if its score is forced from a light or dark shaded cell. If its score can be gotten from an

unshaded cell then we do not shade it, since lowering the entries in the path cells will not

affect this cell.

27

 0 1 2 3 4 5 6 7

 A A C T A A T

0 0 0 0 0 0 0 0 0

1 A 0 1 0 0 1 1 0

2 A 0 0 0 1 2 1

3 C 0 0 0 1 1

4 T 0 0 0 2

5 A 0 1 1

6 A 0 0

7 T 0

Figure 4: All shaded cells must be adjusted in order to proceed with the next best repeat.

The darkly shaded cells represent the path of the optimal alignment, and the lightly

shaded cells are those cells that are affected by the path.

Remark: However, in our code, it is sometimes simpler to shade extra cells, rather than to

check for several possibilities. Although this is unnecessary, it does no harm, since when

the cell is recomputed, it will get its same value.

28

Figure 5 – Traceback Arrows on Matrix M for Finding Repeats

Phase 2 of the adjustment consists of recalculating all shaded cells. Once again, the

calculations are done row-by-row, from the left to right. For each shaded cell, we simply

recompute the maximum as described in Section 3.3.2, excluding the entry that is on the

path.

Referring to Figure 4, we start with the (1,5) entry, which is the second cell in our path.

The 1 came from the match (on the diagonal), and so recompute disallowing that match

but otherwise following the scoring scheme. We take the maximum of {M[0,5]-1,

M[1,4]-1, 0}. The (1,5) entry becomes 0.

Now consider the entry in the (1,6) position. Since the 1 came from the match (on the

diagonal), and the entry (0,5) is not on the path nor affected by the path (unshaded in

Figure 1), the (1,6) entry does not get changed. We proceed to the next row.

In row 2 we begin with the first entry beneath a path entry in row 1, that is, the (2,5)

29

entry. It came from the match and entry (1,4) is unshaded in Figure 1, so entry (2,5)

doesn’t change. Now consider (2,6). Its entry came from a match in the original high

scoring string, so this contribution is not considered in the maximization. Maximizing

over the other possibilities gives us a 0. For the (2,7) entry, we don’t consider the score

moving horizontally. Maximizing over the other possibilities gives 0. Continuing in this

fashion, we adjust the rest of the affected area. Figure 6 shows the adjusted matrix.

 0 1 2 3 4 5 6 7

 A A C T A A T

0 0 0 0 0 0 0 0 0

1 A 0 1 0 0 0 1 0

2 A 0 0 0 1 0 0

3 C 0 0 0 0 0

4 T 0 0 0 0

5 A 0 1 0

6 A 0 0

7 T 0

Figure 6 – Modified Matrix for Finding Different Repeats

The maximum score on our adjusted matrix is a 1, which corresponds to pairing A’s

together. The four cells containing the value of 1 correspond to four different repeats:

2 5 6 6

A A A A

A A A A

1 2 1 5

30

Note that we do not get the repeats

which are part of the original highest scoring repeat

 5 6 7

 A A – T

 A A C T

 1 2 3 4

In general, you would repeat this process until your maximum scores are less than some

predetermined threshold.

3.3.6 Overview for finding general repeats

We now summarize the algorithm.

Algorithm 4: finding general repeats within a string:

1. Align the given string with itself, using a dynamic programming matrix.

(Algorithm 3).

2. Find a largest entry in the matrix and trace back to find the repeat, R.

3. (optional) Score the repeat, R, to check your work.

4. Adjust the matrix to disallow the matches and mismatches that occurred in R.

5. Repeat steps 2-4 until the largest score is less than some predetermined value.

This algorithm is given in Java (written by Louise Yan) with the supplemental materials

in Section 6. And the website http://tandem.sci.brooklyn.cuny.edu/SWrepeats (developed

by Rivka Levitan) runs Algorithm 4. Simply enter a sequence into the text box. You can

view the matrices, in which a * marks a cell on the path, and a $ marks an affected cell.

5 6 7

A A T

A A T

1 2 4

http://tandem.sci.brooklyn.cuny.edu/SWrepeats

31

3.4 Advanced scoring functions

In Figure 7 we include another scoring matrix for the four bases of DNA. The scoring

function, s(a,b), in Figure 7 assigns the highest penalty for inserting a gap, the next

highest penalty for cross pairing purines (A and G) with pyrimidines (T and C), and a low

penalty for interchanging purine with purine or pyrimidine with pyrimidine.

s(a,b)
b

A T G C -

 A 1 -.75 -.25 -.75 -1

T -.75 1 -.75 -.25 -1

a G -.25 -.75 1 -.75 -1

 C -.75 -.25 -.75 1 -1

- -1 -1 -1 -1 X

Figure 7 – Scoring Function for Bases in DNA

Exercise 3.6: Repeat the dynamic programming algorithm with the scoring function

in Figure 7, for string AACTAAT (similar to what was done for Figure 1). What is

the optimal alignment with this new scoring function? Why is there an X in the

matrix?

More advanced scoring schemes use affine gap penalties, rather than the fixed gap

penalty. A fixed gap penalty assigns a fixed cost per insertion/deletion. Affine gap

penalties assign a penalty for the start of the gap (that is, the first gap in – – – . . . –), and

then a lower penalty for each gap that follows. This encourages the extension of gaps

rather than the introduction of new gaps. It is possible to further modify the dynamic

programming algorithm for affine gap penalties, as in [Gotoh82], but with an asymptotic

change to the time complexity. However, this is beyond the scope of the current module

on finding repeats.

32

4 Conclusion

Repeats within DNA strings give scientists important information used in diagnosing

diseases and identity testing. This has prompted the pursuit of efficient methods for

finding repeats.

In the search for these methods, a good starting place is a brute force algorithm. After

analyzing its complexity, one continues to search for better algorithms. The elegant

Smith-Waterman algorithm provides the steps to find general repeats, and can be

performed iteratively to generate many repeats within the same string.

The search for repeats is one of many endeavors in the area of DNA sequencing. The

interested reader is encouraged to explore the many facets of this field [JP04, M04, C94].

33

5 Additional Exercises

5.1 Problem Listing

Homework 1: Can you develop your own brute force method of finding tandem repeats?

Homework 2: In Exercise 3.3 a scoring scheme for ranking misspelled words suggested

looking at the increased likelihood of interchanging vowels while spelling. Propose a

scoring scheme for ranking replacements for mistyped words that takes into account that

an adjacent keyboard key to the correct one might be more likely pressed than other keys

further away. Use your scoring scheme to rank replacement of LOST or LOVE for

mistyped word LODR.

Homework 3: For each of the following strings, find the highest scoring general repeat

using the scoring scheme
otherwise 1

 if 1
),(

ba
bas . After finding it, adjust the matrix to

find the next- highest scoring repeat that is not part of the highest scoring repeat. Identify

the type of repeats you found.

(a) GTCGTCGT

(b) AAGCCAGCTAAGCC

(c) MISSISSIPPI

5.2 Hints and Solutions

Solution Homework 1:

Pick a substring and compare it with the adjacent substring (on its right) of the same

length. If they match, you’ve found a tandem repeat. Do this for all substrings for which

this process is valid. In order to structure this process, you may want to start with all

substrings of length 1, then length 2, up until length n/2.

Solution Homework 2:

A possible scoring scheme could score exact matches as +2, mismatches from adjacent

34

keys as -1, mismatches from keys on the same hand as -2 and other mismatches as -3.

LOST score =2

LODR (2 matches, and 2 mismatches from adjacent keys)

LOVE score=1

LODR (2 matches, 1 mismatch from keys of left hand, 1 adjacent)

Solution Homework 3:

This is an overlapping repeat: GTCGTCGT

 0 1 2 3 4 5 6 7 8

 G T C G T C G T

0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 1 0 0 1 0

2 T 0 0 0 2 1 0 2

3 C 0 0 1 3 2 1

4 G 0 0 2 4 3

5 T 0 1 3 5

6 C 0 2 4

7 G 0 3

8 T 0

The largest number in the matrix is 5, and so tracing back from this cell gives us the

following general repeat:

4 5 6 7 8

G T C G T

G T C G T

1 2 3 4 5

35

If you are searching for repeats with smaller scores, but do not want to report any part of

the repeat already found, you can adjust the matrix. In this case, the adjusted matrix is

 0 1 2 3 4 5 6 7 8

 G T C G T C G T

0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 0 0 0 1 0

2 T 0 0 0 0 0 0 2

3 C 0 0 0 0 0 1

4 G 0 0 0 0 0

5 T 0 0 0 0

6 C 0 0 0

7 G 0 0

8 T 0

The largest number in the matrix is 2, and so tracing back from this cell gives us the

following general repeat:

7 8

G T

G T

1 2

This is a repeat at a distance: GTCGTCGT

Adjusting the matrix once more yields the 0 matrix.

36

For the solutions to 3b and 3c we ran our code (included at the end of this module) and

we present the output of the code. Dark shading is represented by * and light shading by

$.

3(b) AAGCCAGCTAAGCC

Matrix built:

 | | A | A | G | C | C | A | G | C | T | A | A | G | C | C |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

A | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 0 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 3 | 2 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 2 | 4 | 3 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 1 | 3 | 5 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 2 | 4 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 2 | 3 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 3 |

T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Top string: 10 AAGCC 14

Left string: 1 AAGCC 5

Matrix with path:

 | | A | A | G | C | C | A | G | C | T | A | A | G | C | C |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0*| 0 | 0 | 0 | 0 | 0 |

A | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1*| 1 | 0 | 0 | 0 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2*| 1 | 0 | 0 |

37

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 3*| 2 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 2 | 4*| 3 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 1 | 3 | 5*|

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 2 | 4 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 2 | 3 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 3 |

T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Matrix with shading:

 | | A | A | G | C | C | A | G | C | T | A | A | G | C | C |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0*| 0 | 0 | 0 | 0 | 0 |

A | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1*| 1 | 0 | 0 | 0 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2*| 1$| 0 | 0 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1$| 3*| 2$| 1$|

C | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 2$| 4*| 3$|

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 1$| 3$| 5*|

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 2$| 4$|

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 2 | 3$|

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 3 |

T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Adjusted Matrix:

 | | A | A | G | C | C | A | G | C | T | A | A | G | C | C |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

A | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

38

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

C | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 2 | 1 | 0 | 0 | 0 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 0 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 2 | 1 | 0 | 0 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 2 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 3 |

T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 |

A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

3(c) MISSISSIPPI

Matrix built:

 | | M | I | S | S | I | S | S | I | P | P | I |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |

S | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 1 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 3 | 2 | 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 2 | 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Top string: 5 ISSI 8

Left string: 2 ISSI 5

Matrix with path:

39

 | | M | I | S | S | I | S | S | I | P | P | I |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

M | 0 | 0 | 0 | 0 | 0*| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 1*| 0 | 0 | 1 | 0 | 0 | 1 |

S | 0 | 0 | 0 | 0 | 1 | 0 | 2*| 1 | 0 | 0 | 0 | 0 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3*| 2 | 1 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4*| 3 | 2 | 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 2 | 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Matrix with shading:

 | | M | I | S | S | I | S | S | I | P | P | I |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

M | 0 | 0 | 0 | 0 | 0*| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 1*| 0 | 0 | 1 | 0 | 0 | 1 |

S | 0 | 0 | 0 | 0 | 1 | 0 | 2*| 1 | 0 | 0 | 0 | 0 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3*| 2$| 1$| 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2$| 4*| 3$| 2$| 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3$| 3$| 2$| 1$|

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2$| 2$| 2$| 1$|

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1$| 1$| 3$|

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2$| 2$|

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1$|

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Adjusted Matrix:

 | | M | I | S | S | I | S | S | I | P | P | I |

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |

S | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

40

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

6 Supplemental Material

6.1 Teacher’s Notes

6.1.1 Additional Definitions

In this section we review some known definitions on string periodicity, providing some

useful background knowledge for the instructor.

Definition 1 [prefix/suffix]:

A prefix of a string S=s1, …, sn, is a substring of S, s1,…,sj; a suffix of S is a substring of s,

sj,…,sn, for nj1 .

Definition 2 [primitive]:

A string S is cyclic in string v if S is of the form v
k
, for k>1. S is a primitive string if S is

not cyclic in any string v.

Definition 3 [periodic]:

A string S is periodic in v if S=v
k
v’ where v’ is a (possibly empty) prefix of v, v is

primitive, and k≥2. The period of S is |v|, the number of characters in v.

An alternative definition: a string S=s1…sn is periodic in p if s1…sn-p = sp+1…sn.

41

Lemma:

A periodic string S can be expressed as v
k
v’ for one unique primitive v.

Relating Periodicity to Repeats:

An exact tandem repeat (i.e. containing no errors) can be viewed as a periodic string. The

problem of finding all exact tandem repeats in a sequence is then equivalent to finding all

periodic substrings of a string. When multiple copies of a repeat are allowed only

primitive repeats are interesting. For example, consider the repeat, TATATATATATAT.

This can be viewed as TA repeated 6.5 times (period=2), or TATA repeated 3.25 times

(period=4), or TATATA repeated 2.16 times (period=6). The repeat with period 2 is

primitive; the others are not significant.

The tandem repeat TATATATATATAT would be found by Algorithm 4 as an

overlapping repeat of TATATATATAT. In fact, using the alternative definition of

periodicity, every overlapping repeat found by Algorithm 4, for which the overlap is

more than half the repeat’s length is by definition a tandem repeat. This algorithm is used

in practice for finding tandem repeats.

Remark: Many of the efficient algorithms that locate all tandem repeats in a string,

locate all maximal repeats, and perform a separate test to eliminate non-primitive repeats.

Suppose that an algorithm finds repeats starting with smaller period sizes. A simple check

of whether the new repeat spans the identical substring, with a period that is a multiple of

the smaller period, tells whether the larger period repeat is primitive. In the above

example, since 4 and 6 are multiples of 2, the repeats are not primitive.

6.1.2 Suggestions for Presentation of Material

Depending on the background of your audience, you may need a half hour or more of

time to provide them with basic DNA and biology information to motivate finding

repeats in strings. Material can be presented without the framework of DNA sequencing

using the motivation of text searching.

If you are looking for a good overview of basic DNA and genomic facts consider

Department of Energy’s Genome Programs home page:

42

http://www.doegenomes.org/ [DOE04].

This site contains a vast amount of information, a good starting place is:

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer/ [HGP03]. There

is also a glossary: http://www.ornl.gov/sci/techresources/Human_Genome/glossary

Online encyclopedia’s can be used for reference reading. The Wikipedia has detailed

articles on genetics, consider: http://en.wikipedia.org/wiki/Chromosome [W04].

If you want to get to the application faster and spend less time on algorithm analysis, you

could use in Section 2.2.1 a simplified polynomial definition of)(knO time:

Suppose that)(nf is the computing time (loosely speaking, the computing time is

the number of steps to perform a task) to run the algorithm on a string of length n.

If kcnnf)(for some constants c and k , then we say the algorithm takes)(knO

time (which is read “)(nf is big O of kn ” or “ f is order kn ”).

Alternatively, for more advanced students, a good exploratory exercise would be to see if

they could arrive at the general definition if given the above simplified version and then

asked “How could one compare the order of an algorithm to other functions such as

)log(x ,
xe , or general)(xg .”

Provide students a template matrix similar to Figure 1 with the diagonal entries empty,

while the letters along the top, and the initial row of zeros is entered. Have students enter

the diagonal of zeros and calculate the upper triangle scores. Be aware that students often

shift the diagonal of zeros and do not get it positioned correctly.

Additionally, to help students when they are first trying to fill out the matrix shown in

Figure 1, tell them that the vertical and horizontal arrows will always subtract and they

need to check the diagonal for a match or mismatch. Wait until they have the matrix

filled out and are investigating the trace-back arrows to press for a deeper understanding

of the meaning and the process of gap insertion.

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer/
http://www.ornl.gov/sci/techresources/Human_Genome/glossary
http://en.wikipedia.org/wiki/Chromosome

43

6.2 Solutions to Numbered Exercises

Solution 2.1: We’ll list the 12 tandem repeats of GTTGTTGTTGTT and show their

positions in the string in bold.

There are 4 occurrences of TT. TT has size 2 and period 1.

GTTGTTGTTGTT

GTTGTTGTTGTT

GTTGTTGTTGTT

GTTGTTGTTGTT

There are 2 occurrences of TTGTTG. TTGTTG has size 6 and period 3.

GTTGTTGTTGTT

GTTGTTGTTGTT

There are 2 occurrences of TGTTGT. TGTTGT has size 6 and period 3.

GTTGTTGTTGTT

GTTGTTGTTGTT

There are 3 occurrences of GTTGTT. GTTGTT has size 6 and period 3.

GTTGTTGTTGTT

GTTGTTGTTGTT

GTTGTTGTTGTT

There is one occurrence of GTTGTTGTTGTT, the string itself. It has size 12 and period

6.

Solution 2.2:

(a) There are a total of 9 tandem repeats. AA occurs 5 times, AAAA occurs 3 times, and

AAAAAA occurs once.

(b) There are a total of 12 tandem repeats. AA occurs 6 times, AAAA occurs 4 times,

and AAAAAA occurs twice.

Solution 2.3: We can redefine a tandem repeat to allow the repeat to have several

copies. A string r is a multiple tandem repeat if it can be partitioned into consecutive

subwords, 2,' nvvr n
 and 'v is a (possibly empty) prefix of v. The significant tandem

repeats of this type must be primitive, i.e. 1,ksv k and maximal, that is they cannot

44

be extended by adding characters to the left or the right. With this new definition, for

Exercise 2.2, the only tandem repeat in the string A
n
 is “A repeated n times.” Note that

this succinctly represents all O(n
2
) repeats in A

n
 . (See Section 2.2 for definition of O(n

2
).

See also Exercise 2.7, and definitions in Section 6.1).

Solution 2.4: Since)()(2nOnf and)()(3nOng there exist constants 1c , 2c , 1k and

2k such that 2

1)(0 ncnf for all 1kn and 3

2)(0 ncng for all 2kn . Let

},max{ 21 cca and },max{ 21 kkk . Then
333323

2

2

1 2))((anananananncncngf for all kn . Here, ac 2 .

Solution 2.5: nnnnnnnnnnnn  123)2)(1(! holds for 1n . Here

1c .

Solution 2.6: False. Big Oh is not symmetric. Let nnf)(and 2)(nng . Then

))(()(ngOnf , but))(()(nfOng . It is easy to show that))(()(ngOnf . To

rigorously show that))(()(nfOng , you must use the definition of Big oh. The

statement))(()(nfOng means that no matter which c and k you choose, you will

always be able to find an kN such that)()(NcfNg , i.e. that cNN2 or that

cN . So consider an arbitrary c and k . Let }1,max{ ckN . Then cN and

kN . Hence))(()(nfOng .

Solution 2.7:

(a) Using the hint, we consider the modified string, /AA/AA/A$A/. Notice that if you

choose two $’s, the string of A’s between them is a tandem repeat. Therefore, the

number of tandem repeats is the sum of the number of ways we can choose two /’s and

the number of ways we can choose two $’s. This gives us

92/)23(2/)34()2,3()2,4(CC .

(b) Our modified string is /AA/AA/AA/A. Using the same technique as in part (a),

we see that the number of tandem repeats is 122/)34(2/)34()2,4()2,4(CC .

(c) From our solutions to (a) and (b), we can see that the formula for the number of

45

tandem repeats in A
n
 will depend on whether n is even or odd.

If n is even, the character / would appear 1
2

n
 times, and the character $ would appear

2

n
 times. The number of tandem repeats would be

42

1
2

1
22

2

1
22

2

2
1

2
)2,

2
()2,1

2
(

2n

nnnnnnn

n
C

n
C .

If n is odd, the characters / and $ appear the same number of times, namely 1
2

1n
.

The number of tandem repeats would be:

C(
n 1

2
,2) C(

n 1

2
,2) 2C(

n 1

2
,2) 2

n 1

2

n 1

2
1

2

n 1 n 1

4

n2 1

4

Solution 2.8: Consider a modification of Algorithm 2 in Section 2. For ease of

exposition, we number the locations of the input string of length n from 0…n-1. The

modified algorithm compares the string with the suffix of itself beginning at every

possible location 0 i
n

2
. When aligning with a shift i, we are searching for repeats

with period i. Locate all maximal matching segments with length > i. Each matching

segment is a repeat. This will locate multiple tandem repeats in O(n
2
) time.

Example: Given the string ATATATATGC, we search for repeats with period

i=1,2,3,4,5. We show the alignment for period 2. Since there is a matching segment of

length at least 2, we have a multiple tandem repeat. The length of the repeat is that of the

match, plus the shift (which is i). The result is the repeat of length 8, ATATATAT,

spanning positions 0-7.

 0 1 2 3 4 5 6 7 8 9

Original string A T A T A T A T G C

 | | | | | |

Suffix beginning at i=2 A T A T A T A T G C

(shift=period=i=2) 0 1 2 3 4 5 6 7 8 9

46

Solution 2.9: To locate repeats with a Hamming distance of k, we can use either brute

force method presented in Section 2 (Algorithm 1 or 2). We describe a modification of

Algorithm 1, which checks every even length substring. When checking a given

substring, keep a count of the number of mismatches, initialized to zero. Each time a

mismatch is encountered, increment the count. If the count is k when done comparing,

then an approximate tandem repeat with Hamming distance k has been found.

Consider also the modification of Algorithm 2 (which is discussed in Solution 2.8).

Solution 3.1: Find every general repeat in GCGAGAGACGCC

 (1) repeats at any distance

 tandem GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 non-tandem (period >1)

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

(2) overlapping repeats (period >1)

 GCGAGAGACGCC GAG is overlapped with GAG

GCGAGAGACGCC AGA is overlapped with AGA

GCGAGAGACGCC GAGA is overlapped with GAGA

 (3) repeats with 1 error (period >2)

 with a mismatch GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

GCGAGAGACGCC

repeats with a missing character (period >2)

 GCGAGAGACGCC

47

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

 GCGAGAGACGCC

Solution 3.2 The score for BEERBEAR is 4; the score for BEERBEAR is 5.

Solution 3.3: The score for BEERBEAR is 4; the score for BEERBEAR is 5.5.

Solution 3.4: The first repeat, AACGTAACCA, has a score of 4. The second repeat,

AACGTGGCGT, has a score of 8. Even though both repeats contain 3 matching

characters, which contribute 6 to the score, the first repeat has mismatches between

purines and pyrimidines, while the mismatches in the second repeat are within the

same type of base (A to G).

Solution 3.5: The alignment is:

 S -OME

 SCORE with score 0

48

Solution 3.6:

The following matrix is the dynamic programming matrix computed for finding

repeats in the string AACTAAT, based on the scoring function in Figure 7.

 0 1 2 3 4 5 6 7

 A A C T A A T

0 0 0 0 0 0 0 0 0

1 A 0 1 0 0 1 1 0

2 A 0 0.25 0 1 2 1

3 C 0 0 0 1 1.75

4 T 0 0 0 2

5 A 0 1 1

6 A 0 0.25

7 T 0

The best alignment with the new scoring function is

 AA -T

 AACT its score is still 2.

There is an X in the matrix that provides the scoring function because the algorithm

does not allow a gap to be matched against another gap. This is effectively the same

as choosing X= .

49

 7 Bibliography

[B95] G. Benson. A space-efficient algorithm for finding best scoring non-overlapping

alignments. Theoretical Computer Science, 145:357-369, 1995.

[B97] G. Benson. Sequence alignment with tandem duplication. J. Comp. Biology, 4:351–367,

1997.

[B99] G. Benson. Tandem repeats finder – a program to analyze DNA sequences. Nucleic Acids

Research, 27:573-580, 1999.

[BW94] G. Benson and M. Waterman. A method for fast database search for all k-nucleotide

repeats. Nucleic Acids Research, 22:4828-4836, 1994.

[C92] C. T. Caskey et al. An unstable triplet repeat in a gene related to Myotonic Dystrophy.

Science, 255:1256-1258, 1992.

[C94] N. G. Cooper. The Human Genome Project: Deciphering the Blueprint of Heredity.

University Science Books, 1994.

[DOE04] U.S. Department of Energy Office of Science. Genome Programs. Retrieved October 5,

2004 from http://www.doegenomes.org/

[D90] R. F. Doolittle. Searching through sequence databases. Methods in Enzymology., 183:99-

110, 1990.

[Gotoh82] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biology,

162:705-708, 1982.

[GMM04] R Groult, M. Leonard, and L. Mouchard. Speeding up the detection of evolutive tandem

repeats. Theoretical Computer Science, 310(1-3):309-328, 2004.

[Gus97] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press,

1997.

[GZ05] J. R. Gatchel and H.Y. Zoghbi. Diseases of unstable repeat expansion: Mechanisms and

common principles. Nature Reviews Genetics, 6:743755, 2005.

[HGP01] Human Genome Project. Announcements on the first analysis of Genomic Sequence

(February 12, 2001). Retrieved October 5, 2004 from

http://www.ornl.gov/sci/techresources/Human_Genome/project/feb_pr/vignettes.shtml

[HGP03] Human Genome Project. Genomics Primers. Retrieved October 5, 2004 from

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer

[J93a] A. J. Jeffreys. 1992 William Allan Award Address. Am. J. Hum. Genet., 53(1):1–5,

1993.

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer

50

[J93b] A. J. Jeffreys. DNA typing: approaches and applications. Journal of the Forensic Science

Society 33, pages 204–211, 1993.

[JP04] N. C. Jones and P.A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press,

2004.

[K96] H. Kitada, K. Tono, M. Yamamoto, T. Mitamura, A. Ohuchi, T. Ohyanagi, and N.

Matsushima. Multiple alignment of biological sequences containing tandem repeats.

Genome Informatics, 7:276–277, 1996.

[KM96] S. K. Kannan and E. W. Myers. An algorithm for locating nonoverlapping regions of

maximum alignments score. SIAM J. Comput., 25(3):648-662, 1996.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM J.

Comput., 6:322-350, 1977.

[KK99] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time.

Proc. of Symposium on Foundations of Computer Science (FOCS), 596--604, 1999.

[KK01] R. Kolpakov and G. Kucherov. Finding approximate repetitions under Hamming

distance. Lecture Notes in Computer Science, 2161:170+, 2001.

[LSS01] G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate tandem

repeats. Journal of Computational Biology, 8:1-18, 2001.

[LLDA03] A. Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. FORRepeats: detects repeats on

entire chromosomes and between genomes. Bioinformatics, 19(3):319-326, 2003.

[L89] A. M. Lesk. Computational molecular biology. Oxford University Press, 1989.

[M04] D. W. Mount. Bioinformatics Sequence and Genome Analysis, Second Edition. Cold

Spring Harbor Laboratory Press, 2004.

[ML84] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions in a

string. Journal of Algorithms, 5:422-432, 1984.

[M08] S. M. Mirkin. DNA structures, repeat expansions and human hereditary disorders.

Current Opinion in Structural biology, 16(3):351–358, 2008.

[M92] W. Miller. An algorithm for locating a repeated region. manuscript, 1992.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequences of two proteins. Journal of Molecular Biology,

48:443-453, 1970.

 [R04] E. Rivals. A survey on algorithmic aspects of tandem repeats evolution. International

Journal of Foundations of Computer Science, 15(2):225-257, 2004.

[S98] J. P. Schmidt. All highest scoring paths in weighted grid graphs and their application to

finding all approximate repeats in strings. SIAM J. Comput., 27(4):972-992, 1998.

51

[SM97] J. Setubal and J. Meidanis. Introduction to computational molecular biology. PWS

Publishing Company, 1997.

[SR95] G. Sutherland and R. Richards. Simple tandem DNA repeats and human genetic disease.

Proc. Natl. Acad. Sci. USA, 92:3636-3641, 1995.

[SW81] T. F. Smith and M. S. Waterman, Identification of Common Molecular Subsequences,

Journal of Molecular Biology, 147:195-197, 1981.

[UW93] M.W. Uform and R.K. Wayne. Microsatellites and their application to population genetic

studies. Current Opinion in Genetics and Development, 3:939–943, 1993.

[SH02] G. Spong and L. Hellborg. A near-extinction event in lynx: do microsatellite data tell the

tale? Conservation Ecology, 6(1):15, 2002. http://www.consecol.org/vol6/iss/art15/ 1.

[W95] M. S. Waterman. Introduction to computational biology: maps, sequences and genomes.

Chapman & Hall, 1995.

[WYKG04] Y. Wexler and Z. Yakhini and Y. Kashi and D. Geiger. Finding approximate tandem

repeats in genomic sequences. Proc. of the 8th Ann. Conf. on Research in Comp. Biol.

(RECOMB), 2004.

[W04] Wikipedia. Chromosome. Retrieved October 5, 2004 from

http://en.wikipedia.org/wiki/Chromosome

52

Appendix – Source Code for Algorithms 1-4

Algorithm 1 (C++ code)

/***

This C++ code implements Algorithm 1 presented in the DIMACS Education

Module, "Finding Repeats Within Strings."

Input: a string S of length n.

Output: all tandem repeats that are found in S.

Algorithm 1 uses the brute force (naive) method to report all tandem

repeats within the given sequence. A tandem repeat here is exact, i.e.

contains no errors, and contains exactly two parts (also called a

"square").

***/

#include <stdio.h>

#include <string.h>

#define SIZE 1000

int main(void)

{

char S[SIZE];

char repeat[SIZE];

int len=2, p, i;

printf("please enter a string: ");

fgets(S, SIZE-1, stdin);

int n=strlen(S);

printf("S=%s, length=%d \n",S, n);

while (len <=n)

 // len stands for the length of the substring being checked

 // for tandem repeats

 {

 p = len/2; // p stands for the period of the repeat

 for (i=0; i<=n-len; i++)

 // compare contiguous substrings of length p, one

starting at position i,

 // the other starting at position i+p

 {

53

 if (strncmp(S+i,S+i+p,p)==0)

 {

 // copy over repeat for printing purposes

 strncpy(repeat,&S[i],len);

 repeat[len]='\0';

 // report repeat beginning at position i of length len

 printf("repeat found at position %d (%s) of length

%d\n",i+1,repeat,len);

 }

 } // end for loop

 len=len+2;

 }

return 0;

}

Algorithm 2 (C++ code)

/***

This C++ code implements Algorithm 2 presented in the DIMACS Education

Module, "Finding Repeats Within Strings."

Input: a string S of length n.

Output: all tandem repeats that are found in S.

Algorithm 2 is an improvement on Algorithm 1, and has worst case time

complexity of O(n^2).

All tandem repeats within the given sequence are reported.

A tandem repeat here is exact, i.e.

contains no errors, and contains exactly two parts (also called a

"square").

***/

#include <stdio.h>

#include <string.h>

#define SIZE 1000

int main(void)

{

char S[SIZE];

char repeat[SIZE];

int match=0, p, i;

printf("please enter a string: ");

fgets(S, SIZE-1, stdin);

//gets(S);

int n=strlen(S);

54

printf("S=%s, length=%d \n",S, n);

for (p=1; p<=n/2; p++) // p stands for the period of the repeat

{

 for (i=0;i<n-p;i++) // for each i, check whether a repeat ends at

location i+p

 { //printf("p=%d i=%d ",p,i);

 // count how many consecutive characters match

 if (S[i]==S[i+p]) {

 match++;

 if (match>=p)

 {

 // copy over repeat for printing purposes

 strncpy(repeat,&S[i-p+1],2*p);

 repeat[2*p]='\0';

 // report a repeat of length 2p beginning at location

i-p+1 and ending at i+p

 printf("new repeat of length %d at location %d is:

%s\n ",2*p,i-p+2,repeat);

 } // end if match>=p

 } // end if S[i]==S[i+p]

 else match=0;

 } // end for i

} // end for p

return 0;

}

Algorithms 3 and 4 (Java code)

/**

This Java code implements Algorithms 3 and 4 presented in the DIMACS

Education

Module, "Finding Repeats Within Strings."

Input: 1. a string S of length n

 2. a score for matches, mismatches, and gaps

 3. an integer k.

Output: all general repeats that are found in S that have a total score

<=k.

To COMPILE the program, type on the command line:

55

javac SW.java

To RUN, type on the command line:

java SW string k

where string is the input sequence of characters and k is an integer

(i.e. the error threshold).

The scores are represented by the static variables at the beginning of

the program: MATCHSCORE, MISMATCHSCORE AND GAPSCORE.

These can be changed before compilation by the user.

Note: it is not difficult to change this to use a scoring matrix,

instead of these variables, however, the program

does not work that way right now.

IMPLEMENTATION DESCRIPTION:

The program is based upon the Smith-Waterman (SW) algorithm for local

sequence alignment. It uses the SW algorithm to

align the input string against itself to find the repeats within the

input sequence. All repeats with score <= input

threshold are reported.

To aid in understanding of the algorithm, the matrix is printed several

times. This can be commented out by the user.

Descriptions of functions:

buildMatrix() builds the dynamic programming matrix, as shown in

Algorithm 3. The string can be thought of as being placed on the top

and to the left of the matrix. The diagonal of the matrix is set to 0.

Only the upper-right portion of the matrix is computed. The value or

score for an element in the matrix is computed from the max of three

values and 0. The three values correspond to a move in the diagonal, a

move vertically down (from the top), and a move horizontally to the

right. For a move along the diagonal, the characters at the given

positions in the string are compared. If the characters match, the cell

takes a score equal to the score of the diagonal cell plus MATCHSCORE.

If the characters do not match, the cell takes a score equal to the

score of the diagonal cell plus MISMATCHSCORE. For a move vertically

down, a gap is taken for the top substring. The score of the cell is

equal to the score of the top cell plus GAPSCORE. For a move

horizontally to the right, a gap is taken for the left substring. The

score of the cell is equal to the score of the left cell minus

GAPSCORE.

findMax(): After buildMatrix returns, findMax() finds the highest

score in the matrix and returns its position.

56

traceback(): Using the position of the highest score in the matrix

(returned by findmax()), traceback() looks at each of the possible

cells that the position could have been calculated from and traces

these calculations back until it finds a zero. These locations are

called the path. The actual alignment is

retrieved while tracing back the path.

adjustMatrix() adjusts the matrix to dissallow all parts of the

previously reported repeat. First, the function

shade() is called to shade the cells that need to be recomputed. Then,

the function adjustMatrix

takes the max of the diagonal, top, left and 0, just like

buildMatrix(), HOWEVER, it disallows the path.

shade() labels the positions as shaded if they are affected by the

path. Every value on the path can be thought of as shaded. Any position

that must be calculated from a shaded cell (can't be calculated from a

non-shaded) is also shaded.

shade() does this by looking at cells beginning with the first non-zero

position on the path and continues on that row until it finds a non-

shaded cell.

For every row after that, it begins checking under the leftmost shaded

cell of the previous row.

The algorithm goes through traceback and adjusting until the highest

score in the matrix is below the given threshold.

***/

import java.lang.StringBuffer;

class SW{

 public static final int MATCHSCORE = 1; //score for

a match

 public static final int MISMATCHSCORE = -1; //score for

a mismatch

 public static final int GAPSCORE = -1; //gap

penalty

 public static void main(String[] args) {

 String str = args[0]; //takes a

command-line argument

 int threshold = Integer.parseInt(args[1]); //takes a

command-line argument, and parses it using the parseInt method in the

Integer class

57

 int[][] matrix = buildMatrix(str);

 System.out.println("Matrix built:");

 printMatrix(matrix, str);

 findRepeats(matrix,str,threshold);

 }

 /* buildMatrix takes a String and compares it with itself to

produce a matrix of scores.

 buildMatrix creates a matrix with the first row and the

diagonal set to all 0s. The score set in the matrix

 for each cell depends on the max of the diagonal score plus a

MATCHSCORE or MISMATCHSCORE, the left score plus

 GAPSCORE, the top score plus GAPSCORE,and zero.

 buildMatrix returns the filled matrix

 */

 public static int[][] buildMatrix(final String str) {

 int[][] matrix = new int[str.length()+1][str.length()+1];

 int score;

 for(int i = 0; i <= str.length(); i++){

 matrix[0][i] = 0;

 //initialize the first row

 matrix[i][i] = 0;

 //initialize the diagonal

 }

 for(int i = 1; i <= str.length(); i++) {

 for(int j = i + 1; j <= str.length(); j++) {

 if(str.charAt(j-1) == str.charAt(i-1))

 //test for a match

 score = MATCHSCORE;

 else

 score = MISMATCHSCORE;

 matrix[i][j] = max(matrix[i-1][j-1] + score,

matrix[i-1][j] + GAPSCORE, matrix[i][j-1] + GAPSCORE, 0);

 }

 }

 return matrix;

 }

 /* findRepeats takes a 2D matrix of int, and a string.

 findRepeats calls traceback, adjustMatrix and findMax in a

loop until the

 max score in the matrix is lower than the threshold.

 */

 public static void findRepeats(int[][] matrix, String str, int

threshold) {

 Position[] path;

 Position end_path = findMax(matrix);

58

 while(matrix[end_path.getRow()][end_path.getCol()] >=

threshold) {

 path = traceBack(matrix, str, end_path);

 matrix = adjustMatrix(matrix, path, str);

 System.out.println("Adjusted Matrix: ");

 printMatrix(matrix, str);

 end_path = findMax(matrix);

 }

 }

 /* findMax searches a 2d matrix for Position of maximum score and

returns the Position */

 public static Position findMax(int[][] matrix) {

 int max = 0;

 Position maxPos = new Position();

 for(int i = 1; i < matrix.length;i++) {

 for(int j = i; j < matrix.length; j++) {

 if(matrix[i][j] >= max) {

 max = matrix[i][j];

 maxPos = new Position(i,j);

 }

 }

 }

 return maxPos;

 }

 /* traceback takes a 2D matrix of int representing scores, a

string and a Position that contains the highest score.

 This Position is also the end of the path. traceback traces

the path by figuring out where the score could have

 been calculated. If the score came from the left, a gap occurs

in the left string; if the score came form the top,

 a gap occurs in the top string. traceback prints the topstring

and leftstring and returns the path

 */

 public static Position[] traceBack(int[][] matrix, String str,

Position end_path) {

 int i = end_path.getRow();

 int j = end_path.getCol();

 Position[] tmppath = new Position[2*i];

 int path_i = 0;

 //keeps track of the path position

 StringBuffer topStrbf = new StringBuffer();

 StringBuffer leftStrbf = new StringBuffer();

 while(matrix[i][j] != 0) {

59

 tmppath[path_i] = new Position(i,j);

 //save the path Position

 path_i++;

 if(matrix[i][j] == matrix[i][j-1] + GAPSCORE) {

 //compare score with left score minus gap penalty

 topStrbf.insert(0, str.charAt(j-1));

 leftStrbf.insert(0, "-");

 //horizontal move corresponds to a gap in the left string

 j--;

 }

 else if(matrix[i][j] == matrix[i-1][j] + GAPSCORE) {

 //compare score with the top score minus gap penalty

 topStrbf.insert(0,"-");

 //vertical move corresponds to a gap in the top string

 leftStrbf.insert(0,str.charAt(i-1));

 i--;

 }

 else {

 //diagonal move

 topStrbf.insert(0, str.charAt(j-1));

 leftStrbf.insert(0,str.charAt(i-1));

 i--; j--;

 }

 }

 tmppath[path_i] = new Position(i,j);

 //save the path Position

 //create a smaller array to store the Positions in the

correct order

 //(tmppath is larger and is in reverse order)

 Position[] path = new Position[path_i + 1];

 for(i = 0; i < path.length; i++) {

 path[i] = tmppath[path_i - i];

 }

 String topStr = topStrbf.toString();

 //convert the Java immutable StringBuffer object to String

 String leftStr = leftStrbf.toString();

 System.out.println();

 System.out.print("Top string: ");

 System.out.printf("%3d",(path[0].getCol()+1));

 //print the index where the top String begins

 System.out.print(" " + topStr + " ");

 //print the top string

 System.out.printf("%3d",(path[path.length-1].getCol()));

 //print the index where the top string ends

 System.out.println();

 System.out.print("Left string: ");

 System.out.printf("%3d",(path[0].getRow()+1));

 //print the index where the left string begins

 System.out.print(" " + leftStr + " ");

 //print the top string

60

 System.out.printf("%3d", (path[path.length-1].getRow()));

 //print the index where the left string ends

 System.out.println("\n");

 printMatrix(matrix, str, path);

 return path;

 }

 /* max takes four ints and returns the max of the four */

 public static int max(int diag, int top, int left, int zero) {

 int max = 0;

 max = diag;

 if(max < top)

 max = top;

 if(max < left)

 max = left;

 if(max < zero)

 max = zero;

 return max;

 }

 /* adjustMatrix takes a 2D matrix of scores, an array of Position

that represent the path, and a string.

 adjustMatrix calls shade() to get a 2D array representing the

shaded cells of the matrix. adjustMatrix looks at

 every cell that is shaded and adjusts them by calculating a

new score but the new score can not be gotten from

 the path. adjustMatrix returns the adjusted matrix

 */

 public static int[][] adjustMatrix(int[][] matrix, Position[]

path, String str) {

 Position pathfirstpos = path[0];

 int pathfirstrow = pathfirstpos.getRow();

 int[][] shaded = new int[matrix.length][2];

 shaded = shade(matrix, path, str);

 printMatrix(matrix, str, path, shaded);

 int top, diag, left, score;

 //look at the shaded cells and update those cells,

disallowing the path during the calculation

 //continue adjusting until a leftmost value is -1 (if

leftmost value is -1, no shaded cells are on row)

 for(int i = pathfirstrow+1; i < matrix.length &&

shaded[i][0] != -1; i++) {

 for(int j = shaded[i][0]; j <= shaded[i][1]; j++) {

 if(str.charAt(i-1) == str.charAt(j-1))

 //compare string to itself for a match

 score = MATCHSCORE;

 else

 score = MISMATCHSCORE;

61

 if(isPath(path, i-1, j-1, i, j)) //if

the position is on the path and diag is on the path

 diag = 0; //set the

score for the diagonal to 0

 else diag = matrix[i-1][j-1] + score;

 //otherwise, calculate the score for the diagonal

 if(isPath(path, i-1, j, i, j))

 //if the position is on the path and the top is on the path

 top = 0; //set the

score for the top to 0

 else top = matrix[i-1][j] + GAPSCORE;

 //otherwise calculate the score for the top

 if(isPath(path, i, j-1, i, j))

 //if the position is on the path and left is on the path

 left = 0; //set the

score for the left to 0

 else left= matrix[i][j-1] + GAPSCORE;

 //otherwise calculate the score for the left

 matrix[i][j] = max(diag, top, left, 0);

 //update the matrix, setting a new max for the cell

 }

 }

 return matrix;

 }

 /* shade takes a 2D matrix of scores, the path, and a string.

 shade checks the matrix going row by row starting with the

first position on the path and decides whether a cell on the matrix is

to be shaded. A cell is to be shaded if its score is

affected by the path or a shaded cell. In this function, the leftmost

shaded cell of a row must be found (not

 -1) before the rightmost column can be found. The rightmost

column is updated until the end of the row or until the score is not

affected by the

path or any shaded cell.

 shade returns a 2D array of int. The row number of the 2D

array corresponds to the row number of the matrix. The first column of

the 2D array represents the column number of the leftmost

shaded cell of the matrix on the given row while the second column

represents the column number of the rightmost shaded cell

of the matrix on the given row.

 */

 public static int[][] shade(int[][] matrix, Position[] path,

String str) {

 int score, max;

 int[][] shaded = new int[matrix.length][2];

62

 //initialize the first column of shaded to -1 for every

row.

 //(-1 in the first column of shaded means that the leftmost

value has not been found or does not exist for the given row)

 for(int i = 0; i < shaded.length; i++) {

 shaded[i][0] = -1;

 }

 //set leftmost and rightmost shaded according to the path

 for(int i = 0; i < path.length; i++) {

 int row = path[i].getRow();

 if(shaded[row][0] == -1)

 shaded[row][0] = shaded[row][1] =

path[i].getCol();

 else

 shaded[row][1] = path[i].getCol();

 }

 //start shading from the second row on the path

 //continue as long as previous row is shaded (leftmost

shaded column has been found for the previous row)

 for(int i = (path[0].getRow())+1; i < matrix.length &&

shaded[i-1][0] != -1; i++) {

 boolean foundEnd = false;

 //begin shading from the previous row's leftmost

shaded column unless it's on the diagonal(i = j). if it is, start after

the diagonal

 for(int j = (shaded[i-1][0] > i ? shaded[i-1][0] :

i+1); j < matrix[0].length && !foundEnd; j++) {

 if(str.charAt(i-1) == str.charAt(j-1))

 //test for a match

 score = MATCHSCORE;

 else

 score = MISMATCHSCORE;

 max = max(matrix[i-1][j-1] + score, matrix[i-

1][j] + GAPSCORE, matrix[i][j-1] + GAPSCORE, 0);

 //check if this cell comes from shaded cell

 boolean comesFromShaded =

 ! ((max == matrix[i-1][j-1] + score) &&

!isShaded(shaded, i-1, j-1) || //diag score is max, and diag is

not shaded

 (max == matrix[i-1][j] + GAPSCORE) &&

!isShaded(shaded, i-1, j) || //top score is max, and top is not shaded

 (max == matrix[i][j-1] + GAPSCORE) &&

!isShaded(shaded, i, j-1)); //left score is max, and max is not

shaded

63

 //if a nonzero max comes from shaded, update

the leftmost shaded column if it hasn't been found yet.

 //and update the rightmost shaded column each

time.

 if (max != 0 && comesFromShaded)

 //if the nonzero max comes from shaded

 {

 if(shaded[i][0]== -1)

 //if the leftmost shaded column hasn't been found yet

 shaded[i][0] = shaded[i][1] = j;

 //set leftmost & rightmost

 else if (shaded[i][0] != -1 && j <

shaded[i][0]) //if current column is less than leftmost shaded

column

 shaded[i][0] = j;

 //set leftmost shaded

 else if (j > shaded[i][1])

 //if the current column is greater than the rightmost

 shaded[i][1] = j;

 //update rightmost shaded column

 }

 // if the leftmost shaded column has been found

and

 // the top, diagonal, and left for the next

cell are unshaded

 // then there can be no more shaded cells for

the current row

 if (shaded[i][0] != -1 && !(isShaded(shaded, i-

1,j) || isShaded(shaded, i-1, j+1) || isShaded(shaded, i, j))

)

 foundEnd = true;

 // if the leftmost shaded column has not been

found and

 // the current cell is one past the cell

diagonal to the last column of the previous row's rightmost shaded

column

 // then the row does not have any shaded cells

 if (shaded[i][0] == -1 && j > shaded[i-1][1]+1)

 foundEnd = true;

 }

 }

 return shaded;

 }

64

 /* isShaded takes a 2D array of int. The row number of the 2D

array corresponds to the row number of the matrix. The first column of

the 2D array represents the leftmost shadedcell of the

matrix on the given row while the second column represents the

rightmost shaded cell of the matrix on

 the given row. The function also takes an int row and int col

which represent a position in the matrix.

 isShaded returns true if the position represented by int row

and int col is a shaded cell

 */

 public static boolean isShaded(int[][] shaded, int row, int col)

{

 if(shaded[row][0] != -1 && col >= shaded[row][0] && col <=

shaded[row][1]) { //if the column is in the range between the start and

end

 return true; //it

is shaded

 }

 return false;

 //otherwise, it is not shaded

 }

 /* isPath takes an array of Position taht are on the path, and

four ints; int prev row and int prev col represent the position that

should precede

 the position represented by int row and int col.

 isPath returns true if the path position can be represented by

row and col and its preceding position can be represented by prevrow

and prevcol

 */

 public static boolean isPath(Position[] path, int prevrow, int

prevcol, int row, int col) {

 Position pathpos = path[0]; //assign the value of

the first position on the path

 //iterate through the array and look for a position that

matches the given row and col

 //then check if the position before it matches prevrow and

prevcol

 for(int i = 0; i < path.length; i++) {

 pathpos = path[i]; //update the value the

the given path position

 if(pathpos.getRow() == row && pathpos.getCol() ==

col) { //if the position matches the given row and col

 if(path[i-1].getRow() == prevrow && path[i-

1].getCol() == prevcol) //if the position matches prevrow and prevcol

 return true;

 //position matches row and col and prevrow, prevcol

65

 else

 return false;

 //position matches row and col but not prevrow and prevcol

 }

 }

 return false; //no positions on the path match

the passed row and col

 }

 /* isPath takes an array of Position that are on the path, and

two ints which represent a row and column

 isPath returns true if the path contains the Position that is

represented by the row and col

 */

 public static boolean isPath(Position[] path, int row, int col) {

 Position pathpos = path[0]; //assign the value of

the first position on the path

 //iterate through the path array and look for a position

that matches the given row and col

 for(int i = 0; i < path.length; i++) {

 pathpos = path[i]; //assign a new value to

pathpos

 if(pathpos.getRow() == row && pathpos.getCol()

== col)

 return true; //if the row and col of

that pathpos is equal to the passed row and col, return true

 }

 return false; //the path does not

have a Position with a row and col equal to the passed row and col

 }

 /* printMatrix is given a matrix and a string

 printMatrix prints out the matrix and prints the string twice

(horizontally above the matrix, and vertically to the left of the

matrix

 */

 public static void printMatrix(int[][] matrix, String str){

 System.out.print(" | | ");

 //print out the top string

 for(int i = 0; i < str.length(); i++) {

 System.out.print(str.charAt(i) + " | "); //charAt

prints the character at position i of str

 }

 System.out.println();

 //print out left string and matrix values

 for(int i = 0; i < matrix.length; i++) {

66

 if(i == 0)

 System.out.print(" | "); //if

it is the first row of the matrix, print " | "

 else

 System.out.print(str.charAt(i-1) + " | ");

 //otherwise, print the character at the given position

 //print the matrix values

 for(int j = 0; j < matrix.length; j++)

 System.out.print(matrix[i][j] + " | ");

 System.out.println();

 }

 }

 /* printMatrix is given a matrix, string, an array of Positions

that are on the path

 printMatrix prints out the matrix with the path cell values

suceeded by '*' and shaded cell values succeeded by '$'

 */

 public static void printMatrix(int[][] matrix, String str,

Position[] path) {

 System.out.println("Matrix with path: ");

 System.out.print(" | | ");

 //print out the top string

 for(int i = 0; i < str.length(); i++) {

 System.out.print(str.charAt(i) + " | ");

 }

 System.out.println();

 //print out left string and matrix values, mark path cells

with a '*'

 for(int i = 0; i < matrix.length; i++) {

 System.out.print(i == 0 ? " | " : str.charAt(i-1) +

" | "); //if it is the first row of the matrix, print " | "

 //otherwise, print string character at given position

 for(int j = 0; j < matrix.length; j++) {

 if(isPath(path, i,j))

 System.out.print(matrix[i][j]+"*| ");

 //if the position is on the path, succeed the printed value with

*

 else

 System.out.print(matrix[i][j] + " | ");

 //otherwise, just print the value

 }

 System.out.println();

 }

 }

67

 /* printMatrix is given a matrix, string, an array of Positions,

and a 2D array of ints representing the shaded cells of the matrix

 printMatrix prints out the matrix with the path cell values

suceeded by '*' and shaded cell values succeeded by '$'

 */

 public static void printMatrix(int[][] matrix, String str,

Position[] path, int[][] shaded) {

 System.out.println("Matrix with shading: ");

 System.out.print(" | | ");

 //print out the top string

 for(int i = 0; i < str.length(); i++) {

 System.out.print(str.charAt(i) + " | ");

 }

 System.out.println();

 //print out left string and matrix values, mark path cells

with a '*', and shaded cells with a '$'

 for(int i = 0; i < matrix.length; i++) {

 System.out.print(i == 0 ? " | " : str.charAt(i-1) +

" | "); //if it is the first row of the matrix, print " | "

 //otherwise, print string character at given position

 for(int j = 0; j < matrix.length; j++) {

 if(isPath(path, i, j))

 System.out.print(matrix[i][j]+"*| ");

 //if position is on the path, succeed printed value with *

 else if(isShaded(shaded, i,j))

 System.out.print(matrix[i][j]+"$| ");

 //if position is shaded, succed printed value with $

 else

 System.out.print(matrix[i][j] + " | ");

 //otherwise, print cell value normally

 }

 System.out.println();

 }

 }

}

class Position{

 private int row, col;

 Position(){;}

 Position(int row, int col){

 this.row = row;

 this.col = col;

 }

 public int getRow() {return row;}

 public int getCol() {return col;}

}

