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1 Introduction

A voting system in which voters choose between two alternatives (sometimes called a yes-no voting

system) is a weighted voting system if we can specify numerical weights for the voters and a numerical

quota, so that a group of voters is a winning coalition exactly when the sum of the weights of the

voters in the group is greater than or equal to the quota. In a weighted voting system, the preferences

of some voters can carry more weight than the preferences of others. For example, a shareholder

who holds 30% of a particular stock has more “voting weight” than one who holds 10% of the stock.

Political scientists often use weighted voting systems to model institutions like the European

Union, the U.S. Supreme Court, and the U.S. Senate, and study how the weight of each voter is

connected to the voter’s ability to influence decisions, that is, the voter’s power. In this module we

will investigate how to measure the way power is distributed among the voters in a weighted voting

system. We will use tools from linear algebra and geometry to generalize measurements of power,

and to gain intuition about weighted voting systems.

1.1 A review of weighted voting systems

A weighted voting system consists of a set of voters

v1, v2, . . . , vn

with weights w1, w2, . . . wn and a quota q. Each voter casts either a “yes” vote or a “no” vote and

the voter’s weight shows how many votes he or she has. The quota is the total number of votes

needed to pass a measure. Such a system is denoted:

[q : w1, w2, ..., wn].

We will assume that w/2 < q ≤ w where w = w1 + · · · + wn is the total weight of the weighted

voting system. For example, suppose a governing body is composed of people from three parties:

A,B,C and there are 50 members from party A, 49 members from party B and one member from

party C. We’ll assume all members of the party vote the same way, and a simple majority is needed

to pass a measure. Thus this weighted voting system consists of 3 voters, v1 (members from party

A), v2 (members from party B), and v3 (members from party C) and can be represented as:

[51 : 50, 49, 1].

Any group of voters is called a coalition; a coalition is a winning coalition if the sum of the weights

of the voters in the coalition equals or exceeds the quota. If a coalition is not a winning coalition,

then it is a losing coalition. A blocking coalition is a coalition that is not a winning coalition but

has enough votes so that the complementary coalition (which is made up of all the voters not in the

blocking coalition), is a losing coalition. Thus the members of a blocking coalition can prevent a

measure from passing by voting against it. In the weighted voting system of 3 voters v1, v2 and v3
that is represented as

[51 : 50, 49, 1],

there are three winning coalitions and four losing coalitions. The winning coalitions are {v1, v2, v3}, {v1, v2},
and {v1, v3} and the losing coalitions are {v1}, {v2}, {v3}, {v2, v3}. The blocking coalitions are {v1}
and {v2, v3}. We can also see that the weighted voting system [3 : 2, 1, 1] has the same winning,

losing and blocking coalitions as the system [51 : 50, 49, 1].
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Another example of a voting system that can be represented as a weighted voting system

(although it’s not obvious exactly how, just from the description) is the United Nations Security

Council. The Council consists of fifteen members; five of the members are permanent (China,

France, the Russia Federation, the United Kingdom, and the United States) and ten are elected for

two-year periods on a rotating basis. For example, in 2008, the ten non-permanent members were

Belgium, Burkino Faso, Costa Rica, Croatia, Indonesia, Italy, Libyan Arab Jamahiriya, Panama,

South Africa, and Vietnam. In order to pass, a motion must be approved by all five permanent

members and at least four of the non-permanent members. Thus each permanent member has veto

power since it can keep a motion from passing by not voting for it. If we consider the first five voters

in the system as the five permanent members and the others as the rotating members, this system

can be represented as a weighted voting system as follows:

[39 : 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

The next three exercises explore this representation of the U.N. Security Council as a weighted

voting system.

Exercise 1.1 Describe all the winning coalitions of the United Nations Security Council weighted

voting system. How can you tell that all the permanent members have veto power?

Exercise 1.2 Give an example of a blocking coalition in the United Nations Security Council.

Exercise 1.3 What is the minimum number of votes a coalition must have to be a blocking coalition

in the United Nations Security Council?

1.2 The Banzhaf Score and the Shapley-Shubik Score

Suppose five friends are trying to decide which of two restaurants to go to for lunch, each friend

has one vote and majority rules. This situation can be described using the weighted voting system

[3 : 1, 1, 1, 1, 1] since at least three votes out of five are required to win. In this case, it makes sense

that each friend has the same “power” to influence the decision. But what if one friend has three

votes, (maybe because she holds the car keys)? Then at least four votes out of seven are required

to win, changing the weighted voting system to [4 : 3, 1, 1, 1, 1]. Does the friend who has three times

as many votes as the others have three times the “power” of the others as well? We’ll look at two,

specific, well-known power indices, the Banzhaf power index and the Shapley-Shubik power index,

and then consider power indices more generally.

The Banzhaf power index was introduced by attorney John F. Banzhaf III in 1965 in con-

junction with a law suit in Nassau County, New York [1]. The Banzhaf power index, denoted BPI,

of an individual voter is based on that voter’s Banzhaf score. The Banzhaf score is equal to the

number of winning coalitions to which that voter belongs but which are no longer winning coalitions

if the voter leaves. In such cases, the voter is called a critical voter in that coalition. The Banzhaf

power index is obtained from the Banzhaf score and will be defined in Section 1.4 below.

Example 1.4 Let’s compute the Banzhaf score for each voter in the weighted voting system

[3 : 2, 1, 1].

We’ll call the three voters v1, v2, and v3. We first list all the winning coalitions:

{v1, v2}, {v1, v3}, {v1, v2, v3}.
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Then for each voter, we count the number of winning coalitions to which the voter belongs that

become losing coalitions if the voter leaves:

Voter Winning Coalitions that become losing if voter leaves Banzhaf Score

v1 {v1, v2}, {v1, v3}, {v1, v2, v3} 3

v2 {v1, v2} 1

v3 {v1, v3} 1

We denote the Banzhaf scores of this simple weighted voting system as (3, 1, 1).

Exercise 1.5 Compute the Banzhaf scores for the weighted voting systems

[51 : 50, 49, 1] and [6 : 4, 3, 2].

How do the Banzhaf scores for these systems compare with those for [3 : 2, 1, 1]?

To compute the Shapley-Shubik power index for each voter, we begin by listing all of the possible

sequential coalitions of all voters. That is, we list all possible orderings of all voters. (If there are

n voters then there are n! sequential coalitions of all n voters.) We think of the coalition forming

as we move from left to right in a particular sequential ordering. A pivotal voter for a sequential

ordering is the voter who changes the coalition from a losing coalition to a winning one as we move

from left to right in the sequential ordering. The Shapley-Shubik score for a particular voter is the

number of sequential orderings for which the voter is pivotal. The Shapley-Shubik power index will

be defined in Section 1.4 below.

Example 1.6 Let’s find the Shapley-Shubik score for each voter in the weighted voting system

[3 : 2, 1, 1].

We first list all possible orderings of the three voters v1, v2, and v3 :

v1v2v3, v1v3v2, v2v1v3, v2v3v1, v3v1v2, v3v2v1.

Now in each sequential ordering, we start tallying the votes from left to right; we underline the voter

in each ordering who tips the total number of votes to meet or exceed the quota.

v1 v2 v3
v1 v3 v2
v2 v1 v3
v2 v3 v1
v3 v1 v2
v3 v2 v1
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Finally, we count the number of sequential orderings for which each voter is pivotal.

Voter Shapley-Shubik Score

v1 4

v2 1

v3 1

We denote the Shapley-Shubik scores of this simple weighted voting system as (4, 1, 1).

Exercise 1.7 Compute the Shapley-Shubik score of each voter for the weighted voting systems

[51 : 50, 49, 1] and [6 : 4, 3, 2].

How do they compare with the Shapley-Shubik scores for the [3 : 2, 1, 1] system in Example 1.6?

Exercise 1.8 Compute the Banzhaf and Shapley-Shubik scores of each voter for the weighted voting

system

[3 : 2, 2, 1].

How do they compare with the Banzhaf and Shapley-Shubik scores for the other examples and exer-

cises?

Exercise 1.9 The U.S. Supreme Court is often analyzed in terms of its conservative and liberal

blocs. In 2009, the conservative bloc consisted of Chief Justice Renquist and Justices Alito, Scalia

and Thomas. The liberal bloc consisted of Justices Breyer, Ginsberg, Stevens and Sotomayor. Justice

Kennedy was considered a swing voter who voted sometimes with the conservative and sometimes

with the liberal justices. Find the Banzhaf and Shapley-Shubik scores for Justice Kennedy, assuming

the supreme court can be modeled as a [5 : 4, 4, 1] weighted voting system.

Exercise 1.10 Compute the Banzhaf score of each voter for the weighted voting system that repre-

sents the five friends who want to decide on a place for lunch, with each friend having one vote and

majority rules:

[3 : 1, 1, 1, 1, 1].

Then compute the Banzhaf score of each voter for the system where one friend has three votes:

[4 : 3, 1, 1, 1, 1].

How do they compare?

Exercise 1.11 Compute the Banzhaf and Shapley-Shubik scores for each voter in each of the fol-

lowing systems.

1. [4 : 2, 2, 1]

2. [5 : 2, 5, 2]
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3. [2 : 1, 1, 1]

4. [7 : 1, 6, 5]

What do you notice about the scores?

Exercise 1.12 Experiment with several three-voter weighted voting systems, and find an example

in which the weights are kept the same, but an increase in quota results in no change in the Banzhaf

scores. Find another example in which the weights are kept the same, but an increase in the quota

results in a change in the Banzhaf scores.

A voter in a weighted voting system is a dictator if the coalition comprised of that voter alone is a

winning coalition. A voter in a weighted voting system is a dummy if the voter is never a critical

voter in a winning coalition and is never a critical voter in any blocking coalition.

Exercise 1.13 What is the Shapley-Shubik score of a dummy voter in an n−voter system? What

is the Shapley-Shubik score of a dictator in an n−voter system?

Exercise 1.14 Construct two different weighted voting systems so that two of the voters are dummy

voters and one voter is a dictator.

Exercise 1.15 Construct an example of a weighted voting system, different from all of those above,

such that the Banzhaf scores of voters v2 and v3 are the same, yet the Banzhaf score of voter v1 is

less than the Banzhaf scores of voters v2 and v3.

1.3 Equivalent weighted voting systems

Two weighted voting systems with the same number of voters are equivalent if it is possible to

rename the voters of one system with the names of the voters in the other system so that winning

coalitions in the two systems are the same.

Example 1.16 The weighted voting systems

[51 : 50, 49, 1] [6 : 4, 3, 2] and [6 : 3, 2, 4]

are equivalent. The first two voting systems are equivalent because they both have winning coalitions

{v1, v2}, {v1, v3}, {v1.v2, v3}.

The third voting system is also equivalent since its voters 1, 2 and 3 can be renamed to correspond

to the voters 2, 3 and 1 in the other weighted voting systems, in which case its winning coalitions

will be the same.

Exercise 1.17 Give another example of two different weighted voting systems that are equivalent.

Exercise 1.18 Is it possible to have the same winning coalitions but different losing coalitions in

two different weighted voting systems?

Exercise 1.19 If two weighted voting systems are equivalent, must they have the same Banzhaf

scores? How about the Shapley-Shubik scores?

Exercise 1.20 There are five non-equivalent three-voter weighted voting systems. All other three-

voter weighted voting systems are equivalent to one of these five. List an example of each of the

five, along with the Banzhaf and Shapley-Shubik scores of each. (The exercises above should provide

plenty of examples.)
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1.4 The Banzhaf Power Index and The Shapley-Shubik Score

In this section, we look at how to convert Banzhaf and Shapley-Shubik scores to power indices. It

is sometimes convenient to think of power indices as fractions of a whole. After all, the power of an

individual voter is in some sense a measure of the fraction of total power that the voter possesses.

We can obtain the Banzhaf power index (BPI) of a voter in a weighted voting system from the

voter’s Banzhaf score, and the Shapley-Shubik power index (SSPI) from the Shapley-Shubik score,

by normalizing. To normalize, we divide each voter’s score by the sum of all the voters’ scores in

the weighted voting system, as the following example illustrates.

Example 1.21 Let’s normalize the Banzhaf scores and the Shapley-Shubik scores to find the Banzhaf

power indices and the Shapley-Shubik power indices for the simple weighted voting system

[3 : 2, 1, 1].

Recall that we computed the Shapley-Shubik scores as (4, 1, 1). The sum of the scores is 4+1+1 = 6.

To normalize this score we simply divide each score by 6, obtaining the Shapley-Shubik power indices(
2

3
,
1

6
,
1

6

)
.

Note that the sum of the Shapley-Shubik power indices of the three voters is 1. To normalize the

Banzhaf scores of (3, 1, 1), we again divide each score by the sum of all scores, which is 3+1+1 = 5,

and obtain the Banzhaf power indices ( 35 ,
1
5 ,

1
5 ).

Exercise 1.22 Normalize the Banzhaf scores in Exercise 1.10 above to find the Banzhaf power

indices.

While it is true that equivalent voting systems have the same set of power indices, the reverse

is not true. That is, there are weighted voting systems which have the same power indices but are

not equivalent.

Exercise 1.23 Find two weighted voting systems with the same power indices that are not equiva-

lent.

Clearly, when the Banzhaf or Shapley-Shubik scores are normalized, some information is lost.

However, there are a number of advantages to normalizing beyond that of identifying each voter’s

share of power. The most important of these is the ease with which weighted voting systems and

their power indices can be visualized on a graph. This is the subject of the next several sections.

Exercise 1.24 Use Exercise 1.20 to argue that in a weighted voting system with three voters, at

least two of the voters must have the same BPI.

2 The Geometry of Weighted Voting Systems for Three Vot-

ers

2.1 Graphing Weight Distributions in Weighted Voting Systems

In order to fully understand the relationship between weighted voting systems and power indices,

it is helpful to develop a visual picture of each step in the process. Let’s start with the distribution
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of weights itself. Suppose we have a three-person weighted voting system consisting of voters v1, v2,

and v3, with weights w1, w2, and w3, and that the total weight of the system is fixed, say at 30, so

that

w1 + w2 + w3 = 30.

Just as we normalized the power indices in the previous section, we can normalize the weight

distribution by dividing the equation by thirty to get

w̃1 + w̃2 + w̃3 = 1,

where w̃1 = w1/30 is the fraction of the total weight held by v1, and similarly for w̃2 and w̃3.

We will use the symbols w̃1, w̃2 and w̃3 to represent the normalized weight distribution in

everything that follows. Bear in mind, however, that the formula for obtaining these values will

vary depending on the total weight of the weighted voting system. We can interpret this equation

as representing a plane in R3, with w̃1, w̃2 and w̃3 corresponding to the x, y and z axes respectively.

Moreover, since each fraction lies between zero and one, the graph is restricted to the triangular

portion of the plane lying in the positive octant, known as the unit simplex. Thus, each weight

distribution can be represented by a specific point on the simplex. For example, the weighted voting

system

[18 : 15, 10, 5]

has a total weight of thirty. Thus its weight distribution can be represented by the point(
15

30
,
10

30
,
5

30

)
=

(
1

2
,
1

3
,
1

6

)
.

Note that different weight distributions will correspond to the same point on the simplex if their

normalized forms contain equivalent fractions. Thus each point on the simplex shown in Figure 1

represents an infinite number of different weight distributions.

To make visualizing and plotting points easier, let’s redraw the simplex in two dimensions so

that it appears as an equilateral triangle (See Figure 2.).

Vertex A has coordinates (1, 0, 0) and corresponds to the weighted voting system when voter

v1 has all the weight. Vertices B and C have coordinates (0, 1, 0) and (0, 0, 1), respectively, and

correspond to weighted voting systems when voter v2 and voter v3, respectively, have all the weight.

Notice the placement of the point

P =

(
15

30
,
10

30
,
5

30

)
=

(
1

2
,
1

3
,
1

6

)
in the triangle. Since v1 has the largest share of the votes, P is closest to vertex A. Similarly, since

v3 has the smallest share of the votes, P is farthest from vertex C. This illustrates a general principle

when graphing weighted voting systems on the unit simplex: the larger the coordinate, the closer

the vertex.

Another useful principle in graphing points is that when two coordinates are equal, the point

must lie on the perpendicular bisector between the two corresponding vertices. (Recall that a per-

pendicular bisector in an equilateral triangle runs from a vertex to the opposite side, lying equidistant

between the two remaining vertices.) These principles can be used to find the approximate locations

of points before locating them exactly.
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Figure 1: Point P = ( 12 ,
1
3 ,

1
6 ) plotted on the unit simplex x+ y + z = 1.

Example 2.1 Find the approximate placement of the point corresponding to the weighted voting

system [15 : 12, 12, 6].

The normalized weight distribution is(
12

30
,
12

30
,
6

30

)
.

Since w̃1 = w̃2, P lies on the perpendicular bisector between A and B. Since, w̃3 is less than either

w̃1 or w̃2, P lies closer to side AB than to vertex C. See Figure 3.

Example 2.2 Find the approximate placement of the point corresponding to the weighted voting

system [6 : 0, 4, 4].

The normalized distribution of weights is(
0

8
,
4

8
,
4

8

)
.

Since w̃2 = w̃3, P lies on the perpendicular bisector between B and C. In this case, the remaining

coordinate w̃1 = 0 places P at the farthest point from A on the line BC. See Figure 3.

Exercise 2.3 Find the approximate placement of the points corresponding to the following weighted

voting systems

1. [14 : 6, 8, 6]

2. [3 : 4, 0, 0]

3. [3 : 2, 2, 0]
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6 )

Figure 2: The simplex drawn as an equilateral triangle. Point P = ( 12 ,
1
3 ,

1
6 ) plotted on the triangle.

Notice that P is closest to vertex A and farthest from vertex C.

4. [3 : 1, 1, 1]

Exercise 2.4 What property must P satisfy for it to lie on one of the sides of the triangle?

Exercise 2.5 What property must P satisfy for it to lie at one of the vertices of the triangle?

The linearity of the plane underlying the simplex can be used to determine the exact position

of points on the simplex. Recall that in Example 2.1, P =
(
12
30 ,

12
30 ,

6
30

)
lies on the perpendicular

bisector between A and B, closer to the AB line than to vertex C. For reference, consider the

coordinates of the bisector’s endpoints,

Q =

(
1

2
,
1

2
, 0

)
and C = (0, 0, 1),

as shown in Figure 4.

As we trace a line upwards from Q to C, the third coordinates increase while the first two

coordinates decrease. Moreover, the distance from Q increases linearly as the third coordinate

increases. Thus since 6
30 is numerically 1

5 of the way from 0 to 1, point P lies 1
5 of the way from Q

to C.

If no two coordinates are the same, it is easiest to graph the point as the intersection between

two lines.

Example 2.6 Find the exact location of P =
(

4
15 ,

6
15 ,

5
15

)
.

We start by graphing the line w̃1 = 4
15 . Since w̃1 is fixed, it will lie parallel to the side of the

triangle where w̃1 is also fixed. i.e., where w̃1 = 0. From Exercise 2.4, we know that points along

BC have v1 = 0 and thus satisfy w̃1 = 0. Thus the line w̃1 = 4
15 is parallel to the side BC, and

intersects AC and AB at points Q1 and Q2 as shown in Figure 5.
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Figure 3: In the figure on the left, P is on the perpendicular bisector between A and B. It lies closer

to side AB than vertex C. In the figure on the right, P is on the perpendicular bisector between B

and C. Since w̃1 = 0, P lies on side BC.

Both Q1 and Q2 have one coordinate equal to 4
15 , a second coordinate equal to 0 and a third

coordinate equal to 11/15 (since they must sum to 1). Thus

Q1 =

(
4

15
, 0,

11

15

)
and Q2 =

(
4

15
,
11

15
, 0

)
.

This allows us to locate the line w̃1 = 4
15 exactly. In the same way, we can graph the line w̃2 = 6

15 .

The point P now lies at their intersection. As a check, note that the P lies closest to B and farthest

from A, corresponding to the inequalities w̃2 > w̃3 > w̃1.

Although we used the lines w̃1 = 4
15 and w̃2 = 6

15 to plot P, we could equally have used

w̃1 = 4
15 and w̃3 = 5

15 , or w̃2 = 6
15 and w̃3 = 5

15 .

Exercise 2.7 Locate the following points using the method outlined above.

1. ( 13 ,
1
3 ,

1
3 )

2. ( 3
11 ,

4
11 ,

4
11 )

3. ( 12 ,
1
5 ,

3
10 )

2.2 Graphing Weighted Voting Systems

Now that we have a visual tool for representing weight distributions in the unit simplex, we can

use the geometry to analyze weighted voting systems. Jones [9] and Haines and Jones [8] broke the

simplex into regions based on the kinds of winning coalitions that could form. We will examine

these ideas as they will help us in computing the Banzhaf power index for different weighted voting

systems
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Figure 4: P lies 1
5 of the way from Q to C.
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Figure 5: Example 2.6
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Figure 6: v1 is the dictator for any weight distribution lying in the shaded region.

Example 2.8 Consider a weighted voting system of three voters with a total weight of twenty and

a quota of twelve. Under what weight distributions would v1 be a dictator?

The quota represents 12
20 = 3

5 of the total weight; thus v1 would be a dictator if she holds 3
5 or

more of the total weight. On the simplex, this represents the region on the triangle corresponding to

the inequality w̃1 ≥ 3
5 as in Figure 6. Thus any weighted voting system whose weight distribution

lies in this region would include v1 as dictator.

Example 2.9 Consider again a weighted voting system whose quota represents 3
5 of the total weight.

Under what weight distributions would the winning coalitions be

{v1, v2}, {v1, v3} and {v1, v2, v3}?

Since no voter represents a winning coalition on their own, w̃1 < 3
5 , w̃2 < 3

5 and w̃3 < 3
5 .

Also, the fact that {v2, v3} is not a winning coalition implies that w̃2 + w̃3 < 3
5 . Algebraically, this

is equivalent to w̃1 ≥ 2
5 (substitute 1− w̃1 for w̃2 + w̃3 and rearrange the inequality).

Similarly, the inequalities w̃1 + w̃2 ≥ 3
5 and w̃1 + w̃3 ≥ 3

5 imply w̃3 < 2
5 and w̃2 < 2

5 ,

respectively. Putting these facts together, we obtain 2
5 ≤ w̃1 < 3

5 , w̃2 < 2
5 and w̃3 < 2

5 . The

intersection of these inequalities is shown in Figure 7. Thus any weighted voting system whose

weight distribution lies in this region has the required winning coalitions.

As the previous examples indicate, it is possible to decompose the triangle into different

regions corresponding to different combinations of winning coalitions.

To explore this idea, let’s continue to assume that the quota represents 3
5 of the total weight.

The lines corresponding to w̃1 = 3
5 , w̃1 = 2

5 , w̃2 = 3
5 , w̃2 = 2

5 , and w̃3 = 3
5 , w̃3 = 2

5 are indicated in

Figure 8.

Let’s examine the region to the left of the w̃1 = 3
5 line (labeled R1 in Figure 8). In this

region, w̃1 > 3
5 , w̃2 < 2

5 , and w̃3 < 2
5 . Hence {v1} is a winning coalition but neither {v2} nor {v3}

are. Furthermore, since v1 by itself is a winning coalition, so are {v1, v2} and {v1, v3}. Finally, the
inequality w̃1 > 3

5 is equivalent to w̃2 + w̃3 ≤ 2
5 . Thus {v2, v3} cannot be a winning coalition. To
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Figure 7: {v1, v2}, {v1, v3} and {v1, v2, v3} are the only winning coalitions in the shaded region.

Note that since w̃2 < 2
5 , the shaded region must line on the side of the line w̃2 = 2

5 that is away

from B.
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....................................................................................
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Figure 8: The graphs of the lines w̃1 = 2
5 , w̃1 = 3

5 , w̃2 = 2
5 , w̃2 = 3

5 , w̃2 = 3
5 , w̃3 = 2

5 , w̃3 = 3
5 . These

lines break the triangle into 10 regions, labeled as shown.
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sum up, in R1, the winning coalitions are: {v1}, {v1, v2}, {v1, v3}, and {v1, v2, v3}. Note that v1 is a

dictator in R1.

By symmetry, regions R2 and R3 correspond to weighted voting systems where v2 and v3 are

dictators, respectively.

Now let’s look at the region R4. Here, w̃1 < 2
5 , and

2
5 < w̃2 < 3

5 , and
2
5 < w̃3 < 3

5 . Clearly,

no individual voter can form a winning coalition. However the inequality w̃1 < 2
5 is equivalent to

w̃2 + w̃3 ≥ 3
5 ; thus {v2, v3} is a winning coalition. Similarly, {v1, v2} and {v1, v3} are not winning

coalitions. Thus the only winning coalitions in R4 are {v2, v3} and {v1, v2, v3}. Note that v1 is a

dummy in R4.

Again by symmetry, regions R5 and R6 correspond to weighted voting systems where v2 and

v3 are dummies, respectively.

Continuing our analysis, in R7, we have
2
5 < w̃1 < 3

5 , w̃2 < 2
5 , and w̃3 < 2

5 . As before, w̃2 < 2
5

is equivalent to w̃1+w̃3 ≥ 3
5 and w̃3 < 2

5 is equivalent to w̃1+w̃2 ≥ 3
5 . Thus {v1, v3} and {v1, v2} are

winning coalitions, while {v2, v3} is not. Thus the winning coalitions in R7 are {v1, v2}, {v1, v3}, and
{v1, v2, v3}. Note that v1 has veto power in R7. (Recall that a voter has veto power if her inclusion

in a coalition is necessary for the coalition to be winning.)

By symmetry, R8 and R9 correspond to weighted voting systems where v2 and v3 have veto

power, respectively.

Finally, inR10, w̃1 < 2
5 , w̃2 < 2

5 , and w̃3 < 2
5 . These are equivalent to w̃2+w̃3 ≥ 3

5 , w̃1+w̃3 ≥ 3
5 ,

and w̃1+ w̃2 ≥ 3
5 respectively. Thus the winning coalitions in R10 are {v1, v2}, {v1, v3}, {v2, v3}, and

{v1, v2, v3}. This region might be characterized as “majority rules.”

Table 1 summarizes these findings. The third column in the table lists only the minimal

winning coalitions in each region. A minimal winning coalition is a coalition in which all of the

voters are critical. For instance, in R7, notice that in the winning coalition {v1, v2, v3}, neither
voter v2 nor v3 is critical; however all players are critical in the winning coalitions {v1, v2} and

{v1, v3}. Thus {v1, v2} and {v1, v3} are the only minimal winning coalitions in R7. Listing only

minimal winning coalitions is a more concise way of describing a weighted voting system since any

winning coalition can be obtained by adding additional voters to the minimal winning coalitions.

These results are also summarized in Table 2. Note that in column 2, the notation N \{vi} refers to

the set of all players except vi. Hence a weighted voting system in R4 has minimal winning coalition

{v2, v3}.
Having the list of minimal winning coalitions in each region makes it easy to find the power

indices of each player in these regions.

Exercise 2.10 Suppose the quota is changed to correspond to 2
3 of the total weight. Graph the

corresponding lines and determine the winning coalitions in each region. What happens to R10?

Exercise 2.11 Repeat Exercise 2.10 for a quota of 3
4 of the total weight. Is the description “majority

rules” still appropriate for R10?

Exercise 2.12 Using the leftmost triangle in Figure 9, compute the BPI for a weighted voting

system in each of the 10 regions. You may want to refer to exercise 1.20.

The previous examples demonstrate the range of possible scenarios for weighted voting sys-

tems of three voters. There are three cases, determined by the ratio of the quota to the total weight

of the voting system:
1

2
<

q

w
<

2

3
,

q

w
=

2

3
, and

q

w
>

2

3
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Region Winning Coaltions Minimal Winning Coalitions

R1 {v1}, {v1, v2}, {v1, v3}, {v1, v2, v3} {v1}

R2 {v2}, {v1, v2}, {v2, v3}, {v1, v2, v3} {v2}

R3 {v3}, {v1, v3}, {v2, v3}, {v1, v2, v3} {v3}

R4 {v2, v3}, {v1, v2, v3} {v2, v3}

R5 {v1, v3}, {v1, v2, v3} {v1, v3}

R6 {v1, v2}, {v1, v2, v3} {v1, v2}

R7 {v1, v2}, {v1, v3}, {v1, v2, v3} {v1, v2}, {v1, v3}

R8 {v1, v2}, {v2, v3}, {v1, v2, v3} {v1, v2}, {v2, v3}

R9 {v1, v3}, {v2, v3}, {v1, v2, v3} {v1, v3}, {v2, v3}

R10 {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3} {v1, v2}, {v1, v3}, {v2, v3}

Table 1: List of winning coalitions by region for weighted voting systems with q = 3/5.

as shown in Figure 9.

Region Ri for i = 1 to 3 Ri+3 for i = 1 to 3 Ri+6 for i = 1 to 3 R10

MWCs {vi} N\{vi} {vi, vj}, {vi, vk} {v1, v2}, {v1, v3}, {v2, v3}∗
where i ̸= j ̸= k or {v1, v2, v3}∗∗

Table 2: Regions and their corresponding minimal winning coalitions (MWCs). The coalition

structure for R10 depends on whether q ≤ 2
3

∗
or q > 2

3

∗∗
.

3 The Simplectic Geometry of the Range for n = 3

Power indices such as the BPI and SSPI can be thought of as functions. The domain of the power

index is the set of all normalized weighted voting systems. In the prior section, we analyzed the

geometry of the domain. Since a normalized power index for three voters gives an ordered triplet

whose coordinates sum to one, the range of the power index function is the set of ordered triples

whose values sum to one. These values can be represented on the simplex as well. In Exercise 2.12
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Figure 9: Shape of regions for 1
2 < q

w < 2
3 (left), q

w = 2
3 (middle), and 2

3 < q
w < 1 (right).

you used the geometry of the domain to analyze power indices. Now we will explore this concept of

power indices using the geometry of the range.

Example 3.1 Let’s again consider the weighted voting system

[3 : 2, 1, 1].

We have computed both the BPI and the SSPI of this weighted voting system. We calculated the

Banzhaf score as (3, 1, 1) and the Shapley-Shubik score as (4, 1, 1). We saw that normalizing these

indices, gave us BPI = ( 35 ,
1
5 ,

1
5 ) and SSPI = ( 23 ,

1
6 ,

1
6 ). Figure 10 shows the geometric representation

of each of these indices.

Exercise 3.2 What do you notice about the BPI and SSPI for this simple weighted voting game?

Exercise 3.3 Represent the BPI and SSPI for the weighted voting system

[3 : 2, 2, 1]

on the simplex as in example 3.1.

With a power index, the essential information is the relative values of the power distribution.

i.e., the rankings of who holds the most (or least) power. If we have three voters, v1, v2, and v3 with

power indices p1, p2, and p3 then there are 6 possible different strict rankings of power:

p1 > p2 > p3
p2 > p3 > p1
p3 > p1 > p2
p2 > p1 > p3
p1 > p3 > p2
p3 > p2 > p1.
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Figure 10: Representation of the BPI and SSPI for the weighted voting system [3 : 2, 1, 1].

The indifference lines, where the power rankings are not strict

p1 = p2, p1 = p3, p2 = p3,

divide the triangle into 6 ranking regions. In any region, the power rankings among voters remains

constant, no matter what power index is used to measure power.

Exercise 3.4 Label the indifference lines

p1 = p2, p1 = p3, p2 = p3

on the triangle in Figure 11.

Exercise 3.5 In Q1, the power ranking is p1 > p2 > p3 because points in this region are closest to

A and farthest from C. Determine the power rankings for the other 5 regions.

Exercise 3.6 Previously, you computed the BPI and SSPI for the weighted voting systems

1. [4 : 2, 2, 1]

2. [5 : 2, 5, 2]

3. [2 : 1, 1, 1]

In which region do these indices fall?

Exercise 3.7 What do you think happens to the power of an individual voter as the power index

moves towards a vertex in the triangle?

Exercise 3.8 What does the center point (where the three indifference lines intersect) of the triangle

represent in terms of the powers of the three voters?
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Figure 11: Power Ranking Regions Representation

4 General Power Indices and Scores

4.1 The general definition

The Banzhaf power index and the Shapley-Shubik power index are two different methods of calculat-

ing a voter’s power. We saw in Exercise 1.11 that these do not always give the same result. There are

many other power indices that quantify a voter’s power. In order to describe these different power

indices and to see geometrically what they describe, we first need to have a more general definition

of a power index. Suppose that we have a weighted voting system with n voters, v1, v2, . . . , vn. Let

S denote any coalition of voters, so S is just any set of voters. We define the set function

ν(S) =

{
1 if S is a winning coalition

0 if S is a losing coalition

We denote the number of voters in S, or the cardinality of S, by |S|. The set S−{vi} is simply the

set S with voter vi removed.

Exercise 4.1 In the weighted voting system [5 : 2, 5, 2], let S = {v1, v2}.

1. What is ν(S)?

2. What is |S|?

3. What is S − {v2}?

4. What is ν(S)− ν(S − {v2})?

Note that the quantity ν(S) − ν(S − {vi}) can be thought of as measuring the value that

voter vi contributes to the coalition S. For 1 ≤ i ≤ n, let pi denote the power of voter vi. Define pi
of voter vi as

pi =
∑

S⊆{v1,v2,v3,...,vn}

λS · (ν(S)− ν(S − {vi})).
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where the sum is taken over all subsets of voters {v1, v2, . . . , vn} which contain vi. The λS are

coefficients which depend on the particular subset S. If the values of the λS ’s produce a set of pi’s

that are normalized, then we will refer to them as power indices; if the values of λS ’s yield pi’s that

are not normalized then we will refer to them as a power scores. An important class of indices are

those where the λS depends only on how many people are in the coalition. This includes the BPI

and SSPI. We will now examine these indices as well as a few others.

Let’s start with the Banzhaf power index (BPI). Recall that to calculate the BPI of voter vi,

we began by computing the Banzhaf score. The Banzhaf score was found by simply counting up

the number of winning coalitions in which vi was critical. This is equivalent to letting λS = 1 in

the general formula above.

Example 4.2 To compute the Banzhaf score of v1 in the weighted voting system

[3 : 2, 1, 1],

we must compute

p1 =
∑

S⊆{v1,v2,v3}

λS · (ν(S)− ν(S − {v1})) =
∑

S⊆{v1,v2,v3}

1 · (ν(S)− ν(S − {v1}))

We begin by listing all possible coalitions S and identifying whether they are winning or losing

coalitions. Then for any coalition S, we can easily determine whether ν(S) is 1 or 0. We also

compute the second part of the above sum for the first voter : ν(S − {v1}).

S S Winning or Losing ν(S) S − {v1} S − {v1} Winning or Losing ν(S − {v1})

{v1} losing 0 ∅ losing 0

{v2} losing 0 {v2} losing 0

{v3} losing 0 {v3} losing 0

{v1, v2} winning 1 {v2} losing 0

{v1, v3} winning 1 {v3} losing 0

{v2, v3} losing 0 {v2, v3} losing 0

{v1, v2, v3} winning 1 {v2, v3} losing 0

Of the subsets listed above, only four contain v1. Thus for pi representing the Banzhaf score of vi,

we have

p1 =
∑

S⊆{v1,v2,v3}

1 · (ν(S)− ν(S − {v1}))

= 1 · (0− 0) + 1 · (1− 0) + 1 · (1− 0) + 1 · (1− 0) = 3
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which agrees with our previous answer. Note that although we added only four terms, corresponding

to the four subsets containing v1, the answer would have remained the same had we included all

seven subsets since for each of the additional terms, ν(S)− ν(S − {v1}) = 0.

Notice that this formula can only be used to find the Banzhaf score. To find the BPI, the

Banzhaf scores of all the players must be calculated, and then normalized as before. (Note that

there are several versions of the Banzhaf index in current use. Some authors use the value λS = 1
2n−1

for all S, which makes the Banzhaf index a semi-value, see [18]. Others distinguish between the

concept of a Banzhaf measure and a Banzhaf index, see [4]. We will return to this issue in Section

4.3.)

Next let’s consider the Shapley-Shubik power index (SSPI) and determine the value of the

λS . The wrinkle in computing the BPI was that it relied on the total number of critical voters

which varies even with a fixed number of voters depending on the distribution of weights among

those voters. This is not the case with the SSPI, since its score is normalized using the total number

of permutations, which is fixed at n! when there are n players. Thus we can determine λS that yield

the SSPI instead of just the score.

Suppose we are trying to calculate the the Shapley-Shubik power index of voter vi and want

to determine the value of the λS .

Let S be a subset of size k with ν(S) − ν(S − {vi}) = 1. Now the SSPI adds 1 for each

permutation in which vi is pivotal. Thus the quantity ν(S)− ν(S − {vi}) = 1 should be multiplied

by the number of arrangements of the voters in which vi is the last (and pivotal) member of S.

Consider a list of voters of the form

vj1 , vj2 , . . . , vjk−1
, vi, vjk+1

, vjk+2
, . . . , vjn

where the first k− 1 voters are in S and the final n− k voters are not in S. Since there are (k− 1)!

permutations of the first k − 1 voters and (n − k)! permutations of the final n − k voters, this set

should be counted (|S| − 1)!(n− |S|)! times. Since the total number of permutations is equal to n!,

we get the formula,

λS =
(|S| − 1)!(n− |S|)!

n!
.

Example 4.3 Let’s compute the SSPI of v1 in the weighted voting system

[3 : 2, 1, 1].

Since we have three voters,

λS =
(|S| − 1)!(n− |S|)!

n!
=

(|S| − 1)!(3− |S|)!
3!

.

For each subset S, we can compute λS as follows:
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S |S| λS = (|S|−1)!(3−|S|)!
3!

{v1} 1 1/3

{v2} 1 1/3

{v3} 1 1/3

{v1, v2} 2 1/6

{v1, v3} 2 1/6

{v2, v3} 2 1/6

{v1, v2, v3} 3 1/3

Thus, using our general definition, we get

p1 =
∑

S⊆{v1,v2,v3}

λS · (ν(S)− ν(S − {v1}))

=
1

3
· (0− 0) +

1

6
· (1− 0) +

1

6
· (1− 0) +

1

3
· (1− 0) =

2

3
.

Exercise 4.4 Using the general definition above, compute the BPI and the SSPI for each of the

three voters in the weighted voting system

[2 : 1, 1, 1].

We now define two other scores that form power indices by normalizing. One is called the

Dictatorial Power Index (DPI) and the other is the Marginal Power Index (MPI). The Dictatorial

Power score is found using the general definition of a power index with

λS =

{
1 if |S| = 1

0 otherwise,

while the Marginal Power score is found using

λS =

{
1 if |S| = n

0 otherwise.

Since these indices do not always add up to 1 so if we wish to graph them, we must normalize as in

Section 1.4.

Example 4.5 Let’s compute the Dictatorial Power score and Marginal Power score of voter v1 in

the weighted voting system:

[3 : 2, 1, 1].
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We need to compute the λ’s for both indices.

S |S| λS for DPI λS for MPI

{v1} 1 1 0

{v2} 1 1 0

{v3} 1 1 0

{v1, v2} 2 0 0

{v1, v3} 2 0 0

{v2, v3} 2 0 0

{v1, v2, v3} 3 0 1

Thus the Dictatorial Power score for the first voter is

p1 =
∑

S⊆{v1,v2,v3}

λS · (ν(S)− ν(S − {v1})) =

= 1 · (0− 0) + 1 · (0− 0) + 1 · (0− 0) + 0 · (1− 0) + 0 · (1− 0) + 0 · (0− 0) + 0 · (1− 0) = 0.

The Marginal Power score for the first voter is computed in the same manner:

p1 =
∑

S⊆{v1,v2,v3}

λS · (ν(S)− ν(S − {v1})) =

= 0 · (0− 0) + 0 · (0− 0) + 0 · (0− 0) + 0 · (1− 0) + 0 · (1− 0) + 0 · (0− 0) + 1 · (1− 0) = 1.

Exercise 4.6 Explain why the Dictatorial Power Index is so named. Why might someone be tempted

to give the nickname of “veto power index” to the Marginal Power Index?

Exercise 4.7 Compute the Dictatorial and Marginal Power Indices for the three voters in the

weighted voting system

[2 : 1, 1, 1].

Don’t forget to first compute the scores and then normalize to obtain the indices.

Exercise 4.8 What is the Dictatorial Power score for any of the five voters in the weighted voting

system

[3 : 1, 1, 1, 1, 1]?

Compare with the Banzhaf scores calculated in Exercise 1.10.

Exercise 4.9 What is the Marginal Power score for all five voters in the weighted voting system

[4 : 3, 1, 1, 1, 1]?

Compare with the Banzhaf scores calculated in Exercise 1.10.
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There are many other power indices beyond the four mentioned above. In particular, there

are numerous situations where it does not make sense to require the λS to depend only on the

size of the set S. Consider a hiring committee, for example, when more value might be placed

on a coalition that includes minority or other diverse members. Or, in the Supreme Court model

outlined in Exercise 1.9 , it might be appropriate to weight coalitions relative to the probability of

their occurring. (A winning coalition consisting of the conservative and liberal blocs, for instance,

would be be highly unlikely.) Such considerations are beyond the scope of this module; interested

readers might want to look at Weber [22].

4.2 Vector Representations

In this section we examine the ideas of Saari and Sieberg [18] who used ideas from linear algebra

to compare power indices for weighted voting systems with three voters v1, v2 and v3. We start

by interpreting the formula for power indices in terms of vectors. Let us first assume that the λS

depend only on the size of S. Consider how the calculation for the power score/index p1 of voter v1
is found

p1 =
∑

S⊆{v1,v2,v3}

λ|S| · (ν(S)− ν(S − {v1}))

where the sum is taken over all subsets of {v1, v2, v3} which contain v1. Expanding this sum, we get

p1 =
3∑

k=1

∑
S⊆{v1,v2,v3}

|S|=k

λk · (ν(S)− ν(S − {v1}))

= λ1 ·
∑
|S|=1

(ν(S)− ν(S − {v1})) + λ2 ·
∑
|S|=2

(ν(S)− ν(S − {v1})) + λ3 ·
∑
|S|=3

(ν(S)− ν(S − {v1}))

= λ1[ν({v1})− ν(∅)] + λ2[ν({v1, v2})− ν({v2}) + ν({v1, v3})− ν({v3})] + λ3[ν({v1, v2, v3})− ν({v2, v3})].

Similar expansions exist for p2 and p3. These equations can be summarized as:

P =

 p1
p2
p3

 = λ1 ·

 ν({v1})
ν({v2})
ν({v3})

+ λ2 ·

 ν({v1, v2})− ν({v2}) + ν({v1, v3})− ν({v3})
ν({v1, v2})− ν({v1}) + ν({v2, v3})− ν({v3})
ν({v1, v3})− ν({v1}) + ν({v2, v3})− ν({v2})



+λ3 ·

 ν({v1, v2, v3})− ν({v2, v3})
ν({v1, v2, v3})− ν({v1, v3})
ν({v1, v2, v3})− ν({v1, v2})

 .

Thus we can see that the set of power scores or indices (depending on whether they result in

normalized values or not) can be written as a linear combination of three column vectors P 1, P 2,

and P 3 where

P 1 =

 ν({v1})
ν({v2})
ν({v3})

 , P 2 =

 ν({v1, v2})− ν({v2}) + ν({v1, v3})− ν({v3})
ν({v1, v2})− ν({v1}) + ν({v2, v3})− ν({v3})
ν({v1, v3})− ν({v1}) + ν({v2, v3})− ν({v2})

 ,

P 3 =

 ν({v1, v2, v3})− ν({v2, v3})
ν({v1, v2, v3})− ν({v1, v3})
ν({v1, v2, v3})− ν({v1, v2})

 .
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The components of P 1 are the contributions of each voter to coalitions of size one. Notice that a

component of P 1 will be non-zero only when the weight of a voter exceeds the quota. Similarly, the

components of P 2 are the contributions of each voter to coalitions of size two and the components

of P 3 are the contributions of each voter to coalitions of size three. So given any weighted voting

system with three voters, we can find the three vectors P 1, P 2, and P 3 by looking at winning and

losing coalitions.

Example 4.10 Find the three vectors P 1, P 2, and P 3 for the weighted voting system

[3 : 2, 1, 1].

As in example 4.2, we find the winning and losing coalitions. The winning coalitions are

{v1, v2}, {v1, v3}, {v1, v2, v3},

and the losing coalitions are

{v1}, {v2}, {v3}, {v2, v3}.

Thus we can compute

P 1 =

 ν({v1})
ν({v2})
ν({v3})

 =

 0

0

0

 ,

P 2 =

 ν({v1, v2})− ν({v2}) + ν({v1, v3})− ν({v3})
ν({v1, v2})− ν({v1}) + ν({v2, v3})− ν({v3})
ν({v1, v3})− ν({v1}) + ν({v2, v3})− ν({v2})

 =

 2

1

1

 ,

and

P 3 =

 ν({v1, v2, v3})− ν({v2, v3})
ν({v1, v2, v3})− ν({v1, v3})
ν({v1, v2, v3})− ν({v1, v2})

 =

 1

0

0

 .

Exercise 4.11 Find P 1, P 2, and P 3 for the weighted voting system

[4 : 2, 2, 1].

Example 4.12 Calculate the Banzhaf scores of the weighted voting system [3 : 2, 1, 1] by writing

them as a linear combination of the three vectors P 1, P 2, and P 3. Since λ1 = λ2 = λ3 = 1, we see

that the Banzhaf scores are given by

P =

 0

0

0

+

 2

1

1

+

 1

0

0

 =

 3

1

1

 .

Example 4.13 Compute the SSPI of the weighted voting system

[3 : 2, 1, 1].

We know that

P =

 p1
p2
p3

 = λ1P 1 + λ2P 2 + λ3P 3.
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But from our previous calculations, we know that for the SSPI,

λ1 =
1

3
, λ2 =

1

6
, and λ3 =

1

3
.

Thus,

P =
1

3
P 1 +

1

6
P 2 +

1

3
P 3

=
1

3

 0

0

0

+
1

6

 2

1

1

+
1

3

 1

0

0

 =

 2/3

1/6

1/6


Exercise 4.14 Write both the Banzhaf scores and the Shapley-Shubik indices of the weighted voting

system

[4 : 2, 2, 1]

as a linear combination of P 1, P 2, and P 3.

How can we use the vectors P 1, P 2, and P 3 to compare power indices geometrically? We graph the

vectors P 1, P 2, and P 3 on the triangle (of course)! This isn’t as straight-forward as it might sound.

Not only are vectors not triples, their coordinates may not add up to 1. The first issue is easy to

deal with; we simply think of a vector  x

y

z


as an ordered triple (x, y, z). How do we get the sum of its coordinates to be one? Normalize! Simply

add up the components, and then divide each component by this sum. We can do this as long as

the sum is not zero.

Example 4.15 For example, if we wish to represent the vector 1

2

3


on the triangle, we note that the sum of it’s components is six so the normalized vector is 1/6

2/6

3/6

 .

We then represent this vector on the triangle as the ordered triple
(
1
6 ,

1
3 ,

1
2

)
.

What happens if all three of the coordinates are zero? That is, how do we represent the vector (0,

0, 0) on the triangle? In this case we identify the vector with the point of intersection of the three

indifference lines:
(
1
3 ,

1
3 ,

1
3

)
.
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Figure 12: Representing P 1, P 2, and P 3 of the weighted voting system [3 : 2, 1, 1] on the triangle.

Example 4.16 Represent the vectors P 1, P 2, and P 3 of the weighted voting system [3 : 2, 1, 1] on

the triangle.

Since the vector P 1 = 0, it is represented at
(
1
3 ,

1
3 ,

1
3

)
. Since

P 2 =

 2

1

1

 ,

it is represented by the point ( 24 ,
1
4 ,

1
4 ).

The vector P 3 is already normalized and is thus represented on the triangle as (1, 0, 0). We

plot these points in Figure 12.

Exercise 4.17 What do you notice about this figure?

Exercise 4.18 Represent P 1, P 2, and P 3 of the weighed voting system

[4 : 2, 2, 1]

on the triangle as in Figure 12.

In both Example 4.16 and Exercise 4.18, you should have noticed that the vectors P 1, P 2

and P 3 lay along a line. In fact, this is true for any weighted voting system with three players. This

can be seen by considering the five different non-equivalent weighted voting systems you found in

Exercise 1.20. Example 4.16 and Exercise 4.18 correspond to two of these five. It is easy to check

that in the other three cases, all the P i will also lie along a line. (In two cases, the voters all have

equivalent roles in the winning coalitions hence all the P i lie at (1/3, 1/3, 1/3); in the remaining

case, one player is a dictator hence all the P i lie at one of the vertices of the triangle.)

Example 4.19 Now that we know how to represent P 1, P 2, and P 3 on the triangle, how can we

use this to compare power indices? Consider the weighted voting system [3 : 2, 1, 1]. In Example

1.21, we found the BPI and SSPI to be ( 35 ,
1
5 ,

1
5 ) and

(
2
3 ,

1
6 ,

1
6

)
, respectively. Including the BPI and

SSPI in Figure 12 produces Figure 13.
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Figure 13: Representing the BPI,SSPI, P 1, P 2, and P 3 of the weighted voting system [3 : 2, 1, 1] on

the triangle.

Exercise 4.20 What do you notice about Figure 13?

Exercise 4.21 Now represent the BPI,SSPI, P 1, P 2, and P 3 of the weighed voting system [4 : 2, 2, 1]

on the triangle. What do you notice about this figure?

Example 4.22 In Example 4.5, we computed the Dictatorial and Marginal Power scores of the first

voter in the weighted voting system

[3 : 2, 1, 1].

It’s not difficult to compute these scores for the other two voters in this weighted voting system.

We see that the Dictatorial scores of all three voters are 0 and the Marginal Power scores of v1, v2,

and v3 are 1,0,0, respectively. In order to represent these indices on the triangle, we must represent

DPI = (0, 0, 0) as
(
1
3 ,

1
3 ,

1
3

)
, and the already normalized MPI as (1, 0, 0). We see these on the triangle

in Figure 14.

4.3 Convex Hulls

In Examples 4.19 and 4.22, the SSPI, BPI, MPI and DPI all lay along the same line as the P i vectors.

In fact, this will be true of any weighted voting system. In the previous section, we determined

that the P i vectors will always lie along a line by considering each of the five non-equivalent voting

systems. To understand why this is also true for all the different power indices requires the idea of

a convex hull. In general, the convex hull of vectors P 1, P 2, . . . , Pn is the set of points P that can

be written as

P =
∑
k

γkP k where γk ≥ 0 and
∑
k

γk = 1.

See Figure 15. (Note that if the vectors P i all lie along a line, so will the convex hull.)
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Figure 14: Representing the BPI,SSPI,DPI,MPI, P 1, P 2, and P 3 of the weighted voting system

[3 : 2, 1, 1] on the triangle.
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Figure 15: Geometrically, the convex hull of a set of points can be represented by the region bounded

by the lines joining the set of points.

Thus the convex hull consists of all positive linear combinations of the vectors P̄i such that

the sum of the coefficients equals one. This is very similar to our definition of power index. We

have shown that for three voters, the set of power indices satisfies

P =
3∑

i=1

λkP k

as long as the λk depend only on the size of |S| = k. However the λk may not always sum to one.

For instance, for the SSPI,

λ1 + λ2 + λ3 =
1

3
+

1

6
+

1

3
=

5

6
.

Let’s see what happens in the case where a voter (say v1) is a dictator, and suppose p1 = 1. Then

p1 = λ1[ν({v1})− ν(∅)] + λ2[ν({v1, v2})− ν({v2})] + λ2[ν({v1, v3})− ν({v3})]
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+ λ3[ν({v1, v2, v3})− ν({v2, v3})]
= λ1 + λ2[1 + 1] + λ3.

Thus

1 = λ1 + 2λ2 + λ3.

This is true for the SSPI, since

λ1 + 2λ2 + λ3 =
1

3
+

2

6
+

1

3
= 1.

It is also true for the DPI and the MPI since they satisfy λ1 + 2λ2 + λ3 = 1 + 2 · 0 + 0 = 1 and

λ1 +2λ2 + λ3 = 0+2 · 0+ 1 = 1 respectively. (We’ll look at the BPI in a moment.) Thus for power

indices such as these, we can use a change of variables to make the λk sum to 1. Let

γ1 = λ1, γ2 = 2λ2 and γ3 = λ3.

Then ∑
k

γk = 1.

Furthermore, if we let

P̂ 1 = P 1, P̂ 2 = 1/2P 2 and P̂ 3 = P 3,

then

P̂ =
3∑

i=1

γkP̂ k.

This shows that the SSPI, the DPI and the MPI, (and any power index for which p1 = 1),

lies in the convex hull of the P̂ k.

The situation for the BPI is a little more subtle. In this case

p1 = λ1 + 2λ2 + λ3 = 1 + 2 + 1 = 4,

so the change of variables will not work for the BPI. However, we have seen in the examples that

the BPI does lie along the same line as the other power indices. Why is this the case? Notice that

if we altered the BPI slightly by letting the λk = 1
4 for all k, then we would have

p1 = λ1 + 2λ2 + λ3 =
1

4
+

2

4
+

1

4
= 1.

This variation of the BPI is often called the Banzhaf measure and is defined for each voter in a

system of n voters to be the voter’s Banzhaf score divided by 2(n−1). Like the other power indices, it

will lie in the convex hull of the P̂ k. It is clearly different from the Banzhaf score, but its geometry

is the same. (Recall that there are three related variations of Banzhaf power: the Banzhaf score,

the BPI, and the Banzhaf measure.) Notice that the λk values for the Banzhaf measure and the

Banzhaf score are still in the same proportion (in each case, they are equal). Thus they measure the

same relative power between the players. More importantly, when they are normalized, they both

equal the BPI, and hence lie on the same point in the simplex. Thus, since the Banzhaf measure

lies in the convex hull of the P̂ k, so does the Banzhaf score.
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Exercise 4.23 Represent the vectors P̂ 1, P̂ 2, and P̂ 3 of the weighted voting system

[4 : 2, 2, 1]

on the triangle. Use the P̂ k vectors to compute the BPI, SSPI, DPI and MPI and plot them on the

triangle.

In the previous exercise, you may have noticed that the γk’s for the Shapley-Shubik index

were all equal to 1
3 . This means that the Shapley-Shubik index weights all contributions of size k

equally: 1
3 of the power is derived from each of the three coalition sizes. Geometrically, this causes

the Shapley-Shubik index to lie at the barycenter (the “center of gravity”) of the vectors P̂ k. More

importantly, the exercise demonstrates the fact that the power indices lie along a line as a result of

the fact that all the P̂ k vectors lie along a line. One consequence of this is that if there are three

voters, all power indices result in the same ranking of the voters’ power. In fact, since the power

indices either all lie at the barycenter, or a vertex of a triangle, or lie along one of the indifference

lines, in any weighted voting system with three players, at least two players must have equal power.

In more general situations when the set function v can be equal to more than just 0 or 1, we

will see that this is not always the case. This is the subject of the next section.

5 Generalized Power Indices for Non-simple Weighted Vot-

ing Systems

In the weighted voting systems considered so far, there were only two possible outcomes: a “yes”

vote or a “no” vote; either a measure would pass or it wouldn’t. In order to reflect this, when we

look at a power index as a function, there are only two outcomes when a coalition S is evaluated

using the set function v: v(S) = 1 if S is a winning coalition, and v(S) = 0 if S is a losing coalition.

However, sometimes we want to measure a person’s power or value in a situation where the voting is

not just yes or no. In fact, the situation may not involve voting at all. Power indices (including the

Shapley-Shubik and the Banzhaf) can be use in these situations as well. Examples of these sorts of

situations include measuring the amount of value added by different units in designing a company’s

new product, determining the relative worth of a basketball player to their league in order to rank

all players, or even measuring how much a student contributes to a group project.

The method for adapting power indices to these new settings is to use a generalized definition

of power indices as in section 4 but to consider the set function as the characteristic function of a

cooperative games. A cooperative game consists of a set of players (or voters) N = {v1, v2, . . . , vn}
and a characteristic function ν that assigns a real number ν(S) to each subset S ⊂ N such that ν(∅).
Notice in this definition, the value of ν(S) can be any real number. Frequently, the characteristic

function is normalized so that ν(N) = 1 as in the example below.

Example 5.1 Three students, Amy, Benito and Calvin, are assigned to work together on a calculus

project. Amy is an expert at using the computer program Maple, Benito is an excellent writer and

Calvin asks good questions and serves as a peacemaker (since Amy and Benito tend to fight when

they are together without the peacemaker). We’ll assign reasonable values to the possible coalitions

of Amy (A), Benito (B), and Calvin (C), based on their contributions to their joint work:
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v(∅) = 0

v({A}) = 0.3 since Amy has useful skills on her own.

v({B}) = 0.2 since Benito is a good writer, but needs something to write about!

v({C}) = 0.1 since Calvin asks good questions, but has trouble answering them by himself !

v({A,B}) = 0.2 since Amy and Benito argue a lot when they try to work together and waste time.

v({A,C}) = 0.5 since Amy and Calvin work fairly well together.

v({B,C}) = 0.4 since Benito and Calvin also work well together, but they need computational skills.

v({A,B,C}) = 1.0 since all three students work well together and have complimentary skills.

The situation will usually determine the values ν assigns to each subset. Using this new

valuation and our generalized definition off power indices, we can compute the BPI, as the next

example shows.

Example 5.2 Using the same values as in Example 5.1 above, we can determine the Banzhaf score

of Benito. Recall that λS = 1 for all subsets S, so Benito’s Banzhaf score is∑
S∈{A,B,C}(v(S)− v(S − {B}))

= (v({A,B,C})− v({A,C})) + (v({A,B})− v({A})) + (v({B,C})− v({C})) + (v({B})− v(∅))
= 1− 0.5 + 0.2− 0.3 + 0.4− 0.1 + 0.2− 0 = 0.9.

Using the vector representation, we compute the Banzhaf scores for the system and then

normalize the result to obtain the BPI:

P 1 =

 v({A})− v(∅)
v({B})− v(∅)
v({C})− v(∅)

 =

 0.3

0.2

0.1

 ,

P 2 =

 v({A,B})− v({B}) + v({A,C})− v({C})
v({A,B})− v({A}) + v({B,C})− v({C})
v({A,C})− v({A}) + v({B,C})− v({B})

 =

 0.2− 0.2 + 0.5− 0.1

0.2− 0.3 + 0.4− 0.1

0.5− 0.3 + 0.4− 0.2

 =

 0.4

0.2

0.4

 ,

and

P 3 =

 v({A,B,C})− v({B,C})
v({A,B,C})− v({A,C})
v({A,B,C})− v({A,B})

 =

 1− 0.4

1− 0.5

1− 0.2

 =

 0.6

0.5

0.8

 .

Then

P = P 1 + P 2 + P 3 =

 0.3

0.2

0.1

+

 0.4

0.2

0.4

+

 0.6

0.5

0.8

 =

 1.3

0.9

1.3

 .

The BPI is

BPI =
[

1.3
3.5 ,

0.9
3.5 ,

1.3
3.5

]
=

[
13
35 ,

9
35 ,

13
35

]
.

Notice that while Amy and Calvin contribute equally to the group, Benito’s contribution is compar-

atively lower.
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The SSPI can be extended in the same way. For the same example as above, we would use

λS = (|S|−1)!(n−|S|)!
n! to find each person’s power as measured by the SSPI. We can use the vector

representation that we computed above, since the only quantities that are different are the λ|S|.

Example 5.3 Using the SSPI to measure the contributions of each student to the various groups,

our λ|S| will be as in Example 4.3.

λ1 =
1

3
, λ2 =

1

6
, and λ3 =

1

3
.

Thus the

SSPI =
1

3
P 1 +

1

6
P 2 +

1

3
P 3 =

1

3

 0.3

0.2

0.1

+
1

6

 0.4

0.2

0.4

+
1

3

 0.6

0.5

0.8

 =

 11
30
8
30
11
30

 .

Once again Amy and Calvin add equally to the group (as measured by the Shapley-Shubik

power index).

Exercise 5.4 Compute the BPI and SSPI for A,B and C using the following values for the set

function v:
v(∅) = 0

v({A}) = 0.1

v({B}) = 0.2

v({C}) = 0.1

v({A,B}) = 0.3

v({A,C}) = 0.5

v({B,C}) = 0.6

v({A,B,C}) = 1.0.

In the previous examples, although the values were different under each power index, the

rankings of the person who added the most value were the same for each power index. However

even with just three people, different power indices can give different rankings.

Example 5.5 Brothers Thomas (aged two) and Patrick (aged four) are trying to get Grandma to

buy them a new treehouse for Christmas. They could try to get Mom to help sway Grandma as

well, but Grandma will only get the treehouse if one or more of the kids requests it. (She doesn’t

want to get the boys a gift that only Mom thinks is a good idea.) The value for the set function

describing how much influence different coalitions would have when they approach Grandma follow

(P for Patrick, T for Thomas and M for Mom):

v(∅) = 0 v({T, P}) = 0.35

v({M}) = 0 v({T,M}) = 0.7

v({T}) = 0.15 v({P,M}) = 0.4

v({P}) = 0.2 v({T, P,M}) = 1.

As before each person’s contribution to the coalitions of size i are given by the vector P i:

P 1 =

 v({P})− v(∅)
v({T})− v(∅)
v({M})− v(∅)

 =

 0.2

0.15

0

 ,
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P 2 =

 v({P, T})− v({T}) + v({P,M})− v({M})
v({P, T})− v({P}) + v({T,M})− v({M})
v({M,T})− v({T}) + v({P,M})− v({P})

 =

 0.35− 0.15 + .4− 0

0.35− 0.2 + 0.7− 0

0.7− 0.15 + 0.4− 0.2

 =

 0.6

0.85

0.75

 ,

and

P 3 =

 v({P, T,M})− v({T,M})
v({P, T,M})− v({M,P})
v({P,M, T})− v({T, P})

 =

 1− 0.7

1− 0.4

1− 0.35

 =

 0.3

0.6

0.65

 .

The total amount of value Patrick (in row one of each of these vectors) adds to the entire

collection of coalitions of size one is 0.2. Patrick adds a total of 0.6 value to the collection of all

coalitions of size two. Similarly he adds a value of 0.3 to the sole coalition of size three. However,

we would usually be more interested in a single coalition of, say, size two, and so more useful is the

notion of one’s average contribution to a coalition. These vectors containing the average amount

added to a coalition are exactly the same as the P̂i in the previous section. Since there is only one

coalition of size three and one coalition of size one, but two of size two, the only vector affected in

the three player case is P 2. We leave P 1 and P 3 alone, but divide P 2 by two. In general we average

according to the formula:

P̂i =
P i(

n− 1

i− 1

) .

Thus our averaged vectors in this case are:

P̂ 1 = P 1 =

 0.2

0.15

0

 ,

P̂ 2 =
P 2

2
=

 0.3

0.425

0.375

 ,

and

P̂ 3 = P 3 =

 0.3

0.6

0.65

 .

We now normalize each of these in order to graph them on the simplex and draw the convex

hull. The normalized versions are

P
∗
1 =

 0.2
0.35
0.15
0.35
0

0.35

 =

 4
7
3
7

0

 ,

P
∗
2 =

 0.3
1.1

0.425
1.1

0.375
1.1

 =

 12
44
17
44
15
44

 ,
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Figure 16: Example 5.5

and

P
∗
3 =

 0.3
1.55
0.6
1.55
0.65
1.55

 =

 6
31
12
31
13
31

 .

Notice that if a power index only counted how much a player contributed to size one coalitions

(perhaps Grandma will only listen to individuals), then pP > pT > pM , but if a different one

counted only contributions to size two coalitions (Grandma is most influenced by pairs), then for

that index, pT > pM > pP , and finally if a different power index concerns itself with three person

coalitions (Grandma only listens if all three approach her at once) then the ranking is pM > pT > pP .

So the index that is being used to measure added-value very much affects who adds the most value

or who holds the most power. Additionally, if we graph the vectors on the simplex as in Figure 16,

and compute the convex hull, we find that any of seven different rankings is possible (three of

them ties) depending on the index used.

Exercise 5.6 Compute the BPI and the SSPI for Example 5.5 using the vectors P̂ 1, P̂ 2, and P̂ 3.

Plot the vectors and the power indices and check that the power indices lie within the convex hull of

P̂ 1, P̂ 2, and P̂ 3. What do you observe?

6 Additional Topics/Projects

6.1 The Geometry of Paradoxes

Power indices have been used to analyze a wide variety of political and economic institutions,

from the International Monetary Fund [5, 13], to the European Council of Ministers [3,12], to the

composition of County Boards [23]. Nevertheless, they frequently give rise to counter-intuitive
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results. Some of the most famous of these have been labeled paradoxes. In this section we will look

at how the geometry of power indices can be used to understand two of these paradoxes.

The Paradox of Redistribution was first discussed by Fischer and Schotter in 1978 [7]. It

can arise in certain weighted voting systems when the weights are distributed, causing one voter’s

weight to increase while his power decreases (or vice versa).

Example 6.1 Consider the weighted voting system

[7 : 4, 4, 4].

The winning coalitions are {v1, v2}, {v1, v3}, {v2, v3} and {v1, v2, v3}; thus the Banzhaf score of each

voter is equal to two. Suppose, now, that the weight is redistributed to form a new weighted voting

system

[7 : 1, 6, 5].

The winning coalitions are now {v1, v2}, {v2, v3} and {v1, v2, v3}, and the Banzhaf score of players

v1 and v3 has been reduced to one. Normalizing, we see that the set of Banzhaf Power indices has

been transformed from
(
1
3 ,

1
3 ,

1
3

)
to

(
1
5 ,

3
5 ,

1
5

)
. In particular, the power of v3 has decreased while the

percentage of its total weight has increased.

Exercise 6.2 Check that the Shapley-Shubik power index also exhibits the Paradox of Redistribution

in this example.

Exercise 6.3 By using the right-most drawing in Figure 9, create an example of a weighted voting

system that manifests the Paradox of Redistribution by moving from R10 to R5.

The Paradox of Quarreling Members, introduced by Kilgour in 1974, refers to a situation when two

voters refuse to belong to the same coalition, so withdraw from a winning coalition, yet find their

power increased [10]. This result is considered paradoxical because intuitively, we would expect

the voters to suffer a decrease in power corresponding to their decreased ability to form winning

coalitions.

Example 6.4 Consider the weighted voting system

[3 : 1, 1, 2].

The winning coalitions are {v1, v3}, {v2, v3} and {v1, v2, v3}, and the Banzhaf scores are (1, 1, 3). If

voters v1 and v2 quarrel then the coalition {v1, v2, v3} is no longer possible and the Banzhaf scores

become (1, 1, 2). Normalizing, we see that both v1 and v2 have benefited from the quarrel by increasing

their relative share of power from 1
5 to 1

4 .

A look at the right-hand drawing in Figure 9 shows what has happened. The weighted voting

system lies at a vertex between R9 and R10. The effect of the quarrel is to remove the line corre-

sponding to w̃1 + w̃2 = 3
4 , resulting in changes to the shapes of the regions. Regions R7 and R8 get

subsumed by regions R5 and R4 respectively. And regions R6 and R10 form a new region that has

no winning coalitions. Thus the weighted voting system has only the minimal winning coalitions of

R9.

Exercise 6.5 Does the Shapley-Shubik index exhibit the Paradox of Quarreling Members in this

example?
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There are several other paradoxes named in the literature. Interested students might want

to research the Quota Paradox, the Paradox of a New Member or the Paradox of Large Size and

analyze some examples using the geometric ideas introduced in this module. For a comprehensive

treatment of the paradoxes, see Felsenthal and Machover [6].

6.2 The Case n = 4

The previous sections have focused almost entirely on weighted voting systems with three voters.

While most of the results are true for more than three voters, the geometry becomes more difficult to

visualize, for obvious reasons. One possible project for those interested in investigating these areas

more fully, might be to explore the geometry of four voters. For four voters, the two-dimensional

simplex is replaced with the three-dimensional simplex x+ y+ z+w = 1 which can be visualized as

a tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). (Points in the interior of the

tetrahedron satisfy x+y+z < 1; thus w represents the distance from the boundary.) It is possible, by

dividing the tetrahedron into several ”slices,” to analyze the interior of the tetrahedron by region as

we did for the simplex, listing the winning coalitions, and power indices in each region. Visualizing

the convex hull for four voters is more difficult, but the power indices can still be calculated as a

linear combination of basis vectors. One problem that can be fun to explore is to investigate the

number of different power rankings possible as the λS range over all possible values.

7 Selected Solutions

Solution to Exercise 1.1 Winning coalitions consist of the five permanent members and four or

more of the non-permanent members. If any of the permanent members is not in a coalition,

that coalition does not have sufficient weight to be a winning coalition.

Solution to Exercise 1.2 A coalition consisting of any one of the permanent members is a block-

ing coalition. One such example is: {China}. A coalition of at least 7 non-permanent members

is also a blocking coalition.

Solution Exercise 1.3 The minimum number of votes is 7.

Solution to Exercise 1.11 1. the Banzhaf scores: (2, 2, 0) and the Shapley-Shubik scores: (3, 3, 0).

2. the Banzhaf scores: (0, 4, 0) and the Shapley-Shubik scores: (0, 6, 0).

3. the Banzhaf scores: (2, 2, 2) and the Shapley-Shubik scores: (2, 2, 2).

4. the Banzhaf scores: (1, 3, 1) and the Shapley-Shubik scores: (1, 4, 1).

Solution to Exercise 1.12 An example in which the weights are kept the same but an increase

in the quota results in no change to the Banzhaf scores is the system: [5 : 2, 2, 2] which has

Banzhaf scores (1, 1, 1). If the quota is increased to 6, but the weights are kept the same, the

Banzhaf scores don’t change. The system [5 : 2, 5, 2] has Banzhaf scores (0, 4, 0) as we saw in

the second part of Exercise 1.11. If we change the quota to 6 and keep the weights the same,

the Banzhaf scores change to: (1, 3, 1).

Solution to Exercise 1.13 The Shapley-Shubik score of a dummy voter in an n-voter weighted

voting system is 0. The Shapley-Shubik score of a dictator in an n-voter weighted voting

system is n!.
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Solution to Exercise 1.14 Here are two possibilities: [4 : 4, 1, 1] and [6 : 6, 3, 2].

Solution to Exercise 1.19 Equivalent weighted voting systems have the same Banzhaf power

indices. Because the winning and losing coalitions of two equivalent voting systems are the

same, the proportion of times each voter is a critical voter is the same for the two systems.

This is the BPI for each voter. Similarly, the SSPI for each voter is the same for equivalent

voting systems.

Solution to Exercise 1.20 We present the examples of weighted voting systems with the voters’

weights given in decreasing order. Examples of the “non-equivalent” three-voter weighted

voting systems are:

1. [2 : 1, 1, 1] with winning coalitions {v1, v2}, {v1, v3}, {v2, v3}, and {v1, v2, v3}.
2. [4 : 2, 2, 1] with winning coalitions {v1, v2} and {v1, v2, v3}.
3. [5 : 5, 2, 2] with winning coalitions {v1}, {v1, v2}, {v1, v3}, and {v1, v2, v3}.
4. [7 : 6, 5, 1] with winning coalitions {v1, v2}, {v1, v3} and {v1, v2, v3}. {v1, v2, v3}.
5. [3 : 1, 1, 1] with winning coalition {v1, v2, v3}.

Solution to Exercise 1.23 Examples (2) and (6) from the solution to Exercise 1.20 are two non-

equivalent weighted voting systems with the same BPI: (1/2, 1/2, 0).

Solution to Exercise 1.24 If we compute the BPI for the different equivalent weighted voting

systems found in Exercise 1.20 we see that possible BPI values for three-voter weighted voting

systems are: (
1

3
,
1

3
,
1

3

)
,

(
1

2
,
1

2
, 0

)
, (1, 0, 0),

(
3

5
,
1

5
,
1

5

)
, and (0, 0, 0).

Notice that in each of these systems, at least two voters have the same BPI.

Solution to Exercise 2.2 1. The normalized weight distribution is ( 6
20 ,

8
20 ,

6
20 ). Since w̃1 = w̃3,

P lies on the perpendicular bisector between A and C. Since w̃2 is greater than either

w̃1 or w̃3, P lies closer to vertex B than side AC.

2. The normalized weight distribution is (1, 0, 0). Since w̃1 = 1 which is the largest value

possible on the simplex (and w̃2, w̃3 = 0 are the smallest values possible), P coincides

with point A.

3. The normalized weight distribution is (12 ,
1
2 , 0). Since w̃1 = w̃2, P lies on the perpendicu-

lar bisector between A and B. Since w̃3 = 0, point P is as far from vertex C as possible.

Thus P lies on side AB, halfway between the two vertices.

4. The normalized weight distribution is (13 ,
1
3 ,

1
3 ). Since w̃1 = w̃2 = w̃3, P lies at the point

where all three perpendicular bisectors meet. This point is known as the barycenter of

the simplex.

Solution to Exercise 2.3 Point P lies on one of the sides of the triangle if one its coordinates is

equal to zero.

Solution to Exercise 2.4 Point P lies on one of the sides of the triangle if one its coordinates is

equal to zero.
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Figure 17: Solutions to Exercise 2.2

Solution to Exercise 2.5 Point P lies on one of the vertices of the triangle if two of its coordinates

are equal to zero.

Solution to Exercise 2.7 1. Point P is at the barycenter, where the lines w̃1 = w̃2, w̃1 = w̃3

and w̃2 = w̃3 meet.

2. The line w̃1 = 3
11 has endpoints ( 3

11 , 0,
8
11 ) and ( 3

11 ,
8
11 , 0). The line w̃2 = 4

11 has endpoints

(0, 4
11 ,

7
11 ) and ( 7

11 ,
4
11 , 0). Point P lies at the intersection of these lines.

3. The line w̃1 = 1
2 has endpoints (12 ,

1
2 , 0) and (12 , 0,

1
2 ). The line w̃3 = 3

10 has endpoints

(0, 7
10 ,

3
10 ) and ( 7

10 , 0,
3
10 ). Point P lies at the intersection of these lines.

Solution to Exercise 2.10 If a winning coalition must have at least 2
3 of the total weight, a

blocking coalition must have more than 1− 2
3 = 1

3 of the total weight. The picture looks like

the center triangle in Figure 9. Region R10 shrinks to the single point (13 ,
1
3 ,

1
3 ).

Solution to Exercise 2.11 The picture looks like the rightmost triangle in Figure 9. In region

R10, the only winning coalition is {v1, v2, v3}. The region might be called the “unanimity”

region now since instead of just a majority of voters needed to form a winning coalition, you

need all the voters in order to form a winning coalition.

Solution to Exercise 2.12 In region R1, the winning coalitions are {v1}, {v1, v2}, {v1, v3} and

{v1, v2, v3}. Voter v1 is critical in all four winning coalitions and voters v2 and v3 are never

critical, so the BPI is (1, 0, 0). The regions R2 and R3 are the same as region R1 except that

the voters’ roles reversed. Hence the BPI’s in regions R2 and R3 are (0, 1, 0) and (0, 0, 1)

respectively. In region R4, the winning coalitions are {v2, v3} and {v1, v2, v3}. Voter v1 is

never critical and voters v2 and v3 are critical twice, so the BPI is (0, 1
2 ,

1
2 ). By symmetry,

BPI’s in regions R5 and R6 are ( 12 , 0,
1
2 ) and (12 ,

1
2 , 0) respectively. In region R7, the winning

coalitions are {v1, v2}, {v1, v3} and {v1, v2, v3}. Player v1 is critical three times, and players

v2 and v3 are critical twice, so the BPI is ( 37 ,
2
7 ,

2
7 ). By symmetry, BPI’s in regions R8

and R9 are ( 27 ,
3
7 ,

2
7 ) and ( 27 ,

2
7 ,

3
7 ) respectively. And in region R10, the winning coalitions
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Figure 18: Solutions to Exercise 2.7

are {v1, v2}, {v1, v3}, {v2, v3} and {v1, v2, v3}. Each player is critical one time, so the BPI is

( 13 ,
1
3 ,

1
3 ).

Solution to Exercise 3.2 BPI and SSPI for the weighted voting system [3 : 2, 1, 1] lie on the line

p2 = p3.

Solution to Exercise 3.5
Region Power Ranking

Q2 p1 > p3 > p2
Q3 p3 > p1 > p2
Q4 p3 > p2 > p1
Q5 p2 > p3 > p1
Q6 p2 > p1 > p3

Solution to Exercise 3.6 All of the indexes fall on one of the indifference lines pi = pj , i ̸= j, i, j =

1, 2, 3.

1. The BPI and SSPI both fall on the line p1 = p3, and on the line joining vertices A and

B.

2. The BPI and SSPI both lie at vertex B.

Solution to Exercise 3.7 As the power index moves towards a vertex, the power of the voter

corresponding to that vertex increases while the powers of the other voters decrease.

Solution to Exercise 3.8 The center point is the point where the powers of the three voters is

equal: p1 = p2 = p3.

Solution to Exercise 4.1 1. Since v1 + v2 = 7 ≥ 5, S is a winning coalition. Hence ν(S) = 1.

2. |S| = 2.

3. S − {v2} = {v1, v2} − {v2} = {v1}.

42



4. Since S − {v2} = {v1} which is not a winning coalition, ν(S − {v2}) = 0. Hence ν(S)−
ν(S − {v2}) = 1.

Solution to Exercise 4.4 Since each voter has equal weight, each voter will have equal power,

regardless of the power index. Since there are three voters, both the BPI and SSPI of a specific

voter will be 1/3. To see this for the specific voter v2 using the general definition, note that

in order for

ν(S)− ν(S − {v2})

to be non-zero, S must be a winning coalition in which v2 is critical (so that ν(S) = 1 but

ν(S − {v2}) = 0). The only coalitions that satisfy this are S = {v1, v2} and S = {v2, v3}.
Thus Banzhaf score for v2 is

1(̇1− 0) + 1(̇1− 0) = 2.

Similarly, the Banzhaf scores for v1 and v3 are also 2. We normalize the score by dividing by

6, hence the BPI of v2 is p2 = 2
6 = 1

3 . To find the SSPI, since |S| = 2 for both coalitions,

λ|S| =
(2−1)!(3−2)!

3! = 1
6 . Hence

p2 =
1

6
· (1− 0) +

1

6
· (1− 0) =

1

3
.

Solution to Exercise 4.6 The dictatorial power index gets its name because it only assigns weight

to coalitions with one voter. That is, when calculating the power of player vi, the only non-zero

term in the sum is ν({i})− ν(∅). In general, this quantity will be equal to zero, meaning that

player vi has zero dictatorial power. The only time it will not be equal to zero is if ν({i}) = 1,

in which case player vi is a dictator. The marginal power index gets its name because it only

assigns weight to the coalition consisting of all voters. Thus, vi has non-zero power if and only

if ν({v1, . . . , vn}) − ν({v1, . . . , vn}\{vi}) = 1. In general this quantity will be equal to zero,

meaning that vi has zero marginal power. The only time it will not be equal to zero is if vi
is critical in the coalition consisting of all voters. This would occur only if the voter has veto

power, since a coalition of all voters except that voter would be a losing coalition.

Solution to Exercise 4.7 As explained in the previous exercise, the only non-zero term in the

sum for the dictatorial power of v2 is ν({v2}) − ν(∅). Hence p2 = 1 · (0 − 0) = 0. The only

non-zero term in the sum for the marginal power of v2 is ν({v1, v2, v3})− ν({v1, v3}). Hence

p2 = 1 · (1− 1) = 0.

Solution to Exercise 4.11

P1 =

 ν({v1})
ν({v2})
ν({v3})

 =

 0

0

0

 ,

P2 =

 ν({v1, v2})− v({v2}) + ν({v1, v3})− v({v3})
ν({v1, v2})− v({v1}) + ν({v2, v3})− v({v3})
ν({v1, v3})− v({v1}) + ν({v2, v3})− v({v2})

 =

 1− 0 + 0− 0

1− 0 + 0− 0

0− 0 + 0− 0

 =

 1

1

0

 ,

P3 =

 ν({v1, v2, v3})− ν({v2, v3})
ν({v1, v2, v3})− ν({v1, v3})
ν({v1, v2, v3})− ν({v1, v2})

 =

 1− 0

1− 0

1− 1

 =

 1

1

0

 .
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Figure 19: Solutions to Exercise 4.18 and 4.21

Solution to Exercise 4.14 For the Banzhaf scores,

P =

 0

0

0

+

 1

1

0

+

 1

1

0

 =

 2

2

0

 .

For the SSPI,

P =
1

3

 0

0

0

+
1

6

 1

1

0

+
1

3

 1

1

0

 =

 1
2
1
2

0

 .

Solution to Exercise 4.17 The vectors all lie along a line.

Solution to Exercise 4.18 See Figure 19.

Solution to Exercise 4.20 All the points lie along a line.

Solution to Exercise 4.21 See Figure 19 above. The BPI and SSPI correspond to P 1 and P 2.

Solution to Exercise 4.23

P̂1 =

 0

0

0

 P̂2 =

 1
2
1
2

0

 P̂3 =

 1

1

0

 .

Hence for the BPI and SSPI

P =
1

4

 0

0

0

+2

4

 1
2
1
2

0

+1

4

 1

1

0

 =

 5
4
5
4

0

 , and P =
1

3

 0

0

0

+1

3

 1
2
1
2

0

+1

3

 1

1

0

 =

 1
2
1
2

0

 .
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For the DPI and MPI

P = 1·

 0

0

0

+0·

 1
2
1
2

0

+0·

 1

1

0

 =

 0

0

0

 , and P = 0·

 0

0

0

+0·

 1
2
1
2

0

+1·

 1

1

0

 =

 1

1

0

 .

When all these power indices are normalized, we have

Solution to Exercise 5.4

P 1 = [0.1, 0.2, 0.1], P 2 = [0.5, 0.7, 0.8], P 3 = [0.4, 0.5, 0.7],

P = [1.0, 1.4, 1.6], BPI = SSPI = [0.25, 0.35, 0.40].

Solution to Exercise 5.6 The Banzhaf scores are

P̂ = γ̂1P̂1 + γ̂2P̂2 + γ̂3P̂3

=
1

4

 0.2

0.15

0

+
1

2

 0.3

0.425

0.375

 1

4

 0.3

0.6

0.65


=

 0.275

0.4

0.35

 .

If we normalize this, we get

 0.268

0.390

0.341

.
The SSPI is

P̂ = γ̂1P̂1 + γ̂2P̂2 + γ̂3P̂3
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=
1

3

 0.2

0.15

0

+
1

3

 0.3

0.425

0.375

 1

3

 0.3

0.6

0.65


=

 0.267

0.392

0.342

 .

This is very close to the BPI.

Solution to Exercise 6.2 In the original weighted voting system [7 : 4, 4, 4], all players have equal

weight and hence the SSPI is (13 ,
1
3 ,

1
3 ). In the weighted voting system [7 : 1, 6, 5], the SSPI

is ( 16 ,
4
6 ,

1
6 ). Again, the power of v3 has been reduced even though its percentage of the total

weight has increased.

Solution to Exercise 6.3 The right-most drawing in Figure 9 corresponds to weighted voting

systems in which the quota is more than two-thirds of the total weight. In R10, the only

winning coalition is {v1, v2, v3}, so the BPI is ( 13 ,
1
3 ,

1
3 ). In R5, the winning coalitions are

{v1, v3} and {v1, v2, v3}. In these coalitions only v1 and v3 are critical, hence the BPI is

( 24 , 0,
2
4 ) = ( 12 , 0,

1
2 ). In the previous exercise, the Paradox of Redistribution occurred when

a voter’s power decreased even though their fraction of the weight increased. This cannot

happen here, since the only voter whose power decreases by moving to R5 is v2, yet by moving

to R5, v2 will simultaneously lose weight as well. We can look for a different instance of the

Paradox of Redistribution by finding a voter, (such as v1), whose power increases while their

power decreases.

To make it easy, start with weighted voting system where all the voters have equal weight

and the quota is more than two-thirds of the weight, such as [11 : 5, 5, 5]. Since a winning

coalition must have at least eleven-fifteenths of the weight, a blocking coalition must have at

least four-fifteenths of the weight. Thus R5 corresponds to the region w̃2 ≤ 4
15 , w̃1 ≥ 4

15 and
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w̃3 ≥ 4
15 . We are looking for a second voting system that satisfies these constraints and in

which w̃1 decreases. One possibility is w̃1 = 4.5
15 , w̃2 = 3.5

15 and w̃3 = 7
15 . This corresponds to

the weighted voting system [11 : 4.5, 3.5, 7]. (There will be many other answers.)

Solution to Exercise 6.5 The SSPI for the weighted voting system [3; 1, 1, 2] is ( 16 ,
1
6 ,

4
6 ). If v1

and v2 quarrel, then list of sequential orderings of possible coalitions is reduced to v1v3, v3v1,

v2v3, and v3v2. In each case, the second voter in the sequence is pivotal, so the SSPI is

( 14 ,
1
4 ,

2
4 ). Thus the power of v1 and v2 has increased despite their ‘quarrel’.
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