
DIMACS
Center for Discrete Mathematics &
Theoretical Computer Science

DIMACS EDUCATIONAL MODULE SERIES

MODULE 08-2
Reed-Solomon Codes: An Application of Linear Algebra

Date Prepared: May 2008

Steven Leonhardi
Winona State University, Winona, Minnesota 55987

sleonhardi@winona.edu

Lidia Luquet
Saint Mary’s College of California, Moraga, CA 94575

lluquet@stmarys-ca.edu

Jim Sauerberg
Saint Mary’s College of California, Moraga, CA 94575

jsauerbe@stmarys-ca.edu

DIMACS Center, CoRE Bldg., Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ
08854-8018

TEL: 732-445-5928 • FAX: 732-445-5932 • EMAIL: center@dimacs.rutgers.edu Web:
http://dimacs.rutgers.edu/

Founded as a National Science Foundation Science and Technology Center and a Joint Project of Rutgers
University, Princeton University, AT&T Labs - Research, Bell Labs, NEC Laboratories America and
Telcordia Technologies with affiliated members Avaya Labs, Georgia Institute of Technology, HP Labs,
IBM Research, Microsoft Research, Rensselaer Polytechnic Institute, and Stevens Institute of Technology.

Module Description Information

• Title:

Reed-Solomon Codes: An Application of Linear Algebra

• Author(s):
1. Steven Leonhardi, Winona State University, Winona, Minnesota 55987

sleonhardi@winona.edu

2. Lidia Luquet, Saint Mary’s College of California, Moraga, CA 94575
lluquet@stmarys-ca.edu

3. Jim Sauerberg, Saint Mary’s College of California, Moraga, CA 94575

jsauerbe@stmarys-ca.edu

• Abstract:
This module provides a brief introduction to the theory of error-detecting and error-
correcting codes, with special emphasis on the Reed-Solomon codes. Several different
methods of defining codes and decoding are presented, and the parameters of these codes
and their significance in practice are discussed. Simple, concrete examples are studied
first before more general families of codes are considered. Throughout the module,
concepts and results from Linear Algebra and (to a lesser degree) Abstract Algebra are
used to define and analyze these codes.

• Informal Description:
In this module we discuss how one can use linear algebra and finite fields to define and
analyze the performance of various error-detecting and error-correcting codes used in
Coding Theory, with special attention given to Reed-Solomon codes. These codes are
widely used in the production of compact discs (CDs) and digital video disks (DVDs), as
well as in cell phone and satellite communications. The module presents examples of
Reed-Solomon codes that have smaller dimensions than those used in industry, to
simplify the computations and analysis, but which share the same properties as widely
used codes. Each section of the module includes exercises for the reader to test his or her
understanding and to further explore these codes.

• Target Audience:
This module is aimed at the undergraduate students who are studying Linear Algebra or
Abstract Algebra, or who are studying Coding Theory as an independent project. Most
students registered in these courses are at the sophomore, junior, or senior level.

• Prerequisites:
Students are assumed (after some review as provided in the appendix) to be familiar with
basic concepts from a linear algebra course such as matrix operations, independent and
dependent vectors, span, basis vectors, vector space, dimension, null space, column
space, and rank. Finite fields are used, but no previous exposure to finite fields is
required.

• Mathematical Field:
Linear Algebra, Abstract Algebra.

• Application Areas:
Coding Theory

• Mathematics Subject Classification:
MSC (2000): 11T71, 94B05, 94B20, 94B35

• Contact Information:
Steven Leonhardi, Winona State University, Winona, Minnesota 55987

sleonhardi@winona.edu

• Other DIMACS modules related to this module:
None

REED-SOLOMON CODES: AN APPLICATION OF LINEAR ALGEBRA

S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

1. Linear Codes

Who uses linear algebra? Anyone who enjoys listening to compact disks, watching DVD’s,
talking over cellular telephones, or surfing the internet over a high-speed modem. The
reliability of satellite communication, digital television, and all of the other storage and
communication devices mentioned, depends in part on the use of error-correcting codes,
whose design and usefulness in turn is founded on basic applications of linear algebra and
abstract algebra. Check digits, which are used in UPC codes, ISBN numbers, and driver’s
licenses, also rely on concepts from coding theory.

The goal of algebraic coding theory is to reduce or eliminate any errors that are intro-
duced in a message when that message is transmitted. Redundancy is added to the original
message to produce an encoded message consisting of codewords. The transmission of
the encoded message may (and usually does) introduce errors, caused, perhaps, by static
electricity or a blot on the compact disc. As a consequence, the received word may be
different from the sent codeword. A decoder then determines an estimate of the sent
codeword, detecting and correcting errors to the extent made possible by the redundancy
that was added to the message by the encoder. From the estimate of the sent codeword,
the decoder can estimate the message that was originally sent. The sequence of steps in
this process may be depicted as follows.

Message → Encoded Message → Sent Codewords → Received Words
→ Estimate of Sent Codewords → Estimate of Message

The goal of this module is to give a very brief introduction to the subject of algebraic
coding theory, with emphasis on Reed–Solomon codes, which are among the most commonly
used codes. Section 1 gives an introduction to a few simple codes, including our first
example of a Reed–Solomon code. Section 2 gives additional standard methods of defining
codes and decoding received messages, and gives a more general method for defining Reed–
Solomon codes. Section 3 gives a third approach to Reed–Solomon codes, and develops a
deeper understanding of the structure of these codes by exploring their algebraic properties
in greater detail.

1

2 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

The reader is assumed to be a student in a first course in Linear Algebra or Abstract
Algebra who has seen vector spaces over the real numbers. The Appendix offers a review of
the necessary prerequisite material, and introduces the concept of a finite field. The results
stated for vector spaces over finite fields follow closely those for real vector spaces. The
later sections require greater mathematical maturity, but all three sections are intended to
be accessible to anyone who has progressed in a Linear Algebra course up to the concept
of a linear transformation and who has reviewed the material in the Appendix.

1.1. Linear Codes and Reed–Solomon Codes. To create a code we must choose a
set S of symbols and then specify the set C of codewords that will make up the code. If
S = {0, 1, 2}, a code word could be 011201. When this codeword is transmitted through
a channel, such as a telephone line, it may arrive as 011201 or it may arrive as 011221,
i.e., with an error. In order to mathematically represent words that are sent or received,
we consider them as vectors selected from a vector space V over a field F . The reader is
probably most familiar with vector spaces that are defined over infinite fields such as the
real numbers R or the rationals Q. However, since the messages we work with will always
be formed from a finite set of symbols, we will find it more appropriate to work over a finite
field such as Z2 or Z7.

In general, a code C consists of a set of codewords. For example,

C1 = {NN,NE,EE, SE, SS, SW,WW,NW}

is a code that uses the English alphabet as symbols, while C2 = {0001, 0101, 1011, 0011, 1001}
is a code with symbols in Z2. Each word of the code is sent through a channel. Assume we
have adopted C2 and suppose the codeword 0101 is sent through. If the word that arrives
at the other end of the channel, i.e., the received word is:

(1) 0101, we would conclude that the word sent was 0101, as this word is in our code.
In other words, we are able to decode the message.

(2) 1111, we know there has been an error in the transmission because the word received
is not in the code. We would conclude that the word sent was 1011 because it is the
only word in the code that differs from 1111 in only one digit. (Here we are using
an informal criterion to decode a message that has arrived with an error: the word
sent was most likely the one in the code that differs from the word received in the
smallest number of places.)

(3) 0111, we would know there has been an error in the transmission because that word
is not in the code. We would not be able to decide whether the original word was
0101 or 0011 since both differ by a single digit from the word received. So we could
not decode the received message. That is, although we would detect an error, we
would not be able to correct it.

REED-SOLOMON CODES 3

(4) 0011, we would mistakenly accept this as the sent word, since it is a codeword.
Note that when using this code, we can detect any one-digit error, but cannot
always detect a transmission with errors in two digits.

The goal of coding theory is to design codes that allow for the efficient detection, and
sometimes correction, of transmission errors. In what follows we will consider only codes
that are also vector spaces.

Definition 1.1. A linear code C over the field Zp is a subspace of the vector space Zn
p for

some n. If, as a subspace, C has dimension k, we say C is an [n, k]p code. The numbers
n and k are the length and dimension of the code, respectively, and together constitute
two parameters of the code C. A codeword, or more simply, a word in an [n, k]p code
is a string of n characters taken from Zp.

Intuitively, the reader may want to think of the n characters in a codeword as consisting
of k characters of information and (n−k) redundant characters that may be used to detect
and possibly correct errors. Such a code is called a systematic code. In practice, some
common codes are systematic, and other codes are more complicated.

Example 1.1: Consider the vector (1, 0, 1) in Z3
2. From now on we will write such a vector

as 101. Let C be the subspace generated by 101, i.e., C = {101, 000}. For this code we
have n = 3, k = 1 and p = 2. Thus C is a [3, 1]2 code. �

Example 1.2: The [5, 1]2 code C = {00000, 11111} is called the repetition code of
length five, since each codeword consists of five copies of the same symbol. Only two
words can be sent and it is easy to detect and correct up to two errors. If the message
11111 is sent and it arrives as 10110, we detect two errors, correct them and decode it as
11111. (It could be argued that the received word 10110 might have three errors and the
original message was 00000. However, we assume that only two errors occurred, since a
transmission with two errors is more likely than a transmission with three errors, for any
useful channel. In general, we decode received words assuming that fewer errors are more
likely than a greater number of errors.) �

Since a subspace is determined by a basis, rather than enumerating all the elements in
a code C we may specify C by giving its basis.

Example 1.3: The [7, 3]2 code (i.e., the 3-dimensional subspace of Z7
2) generated by the

vectors 0001111, 0110011 and 1010101. A convenient way to indicate this code is to create
a matrix G whose rows are the given vectors,

G =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ,

4 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

for then the code is the row space of G, i.e., the subspace denoted Row(G) of Z7
2 gen-

erated by the linear combinations of the rows. This matrix G has rank 3 (look at the
determinant of the last three columns of G and use Theorem 4.6). Therefore the rows of
G are linearly independent and this code is a subspace of dimension 3 over Z2. Section 4.3
in the Appendix tells us that this code has pk = 23 = 8 codewords. One such codeword is
(0001111) + (1010101) = (1011010). �

Definition 1.2. Let C be a linear code with basis B. The matrix G whose rows are the
codewords in B is called a generator matrix for C.

So G is a generator matrix for code C if and only if the rows of G span C, that is,
Row(G) = C. Just as a subspace may have many bases, a code may have many generating
matrices: any two row equivalent matrices will generate the same code.

Finally we come to our main topic, Reed–Solomon codes, which have a generating
matrix of a special form.

Example 1.4: The [6, 4]7 Reed–Solomon code has generator matrix

G =


1 1 1 1 1 1
1 2 3 4 5 6
12 22 32 42 52 62

13 23 33 43 53 63

 =


1 1 1 1 1 1
1 2 3 4 5 6
1 4 2 2 4 1
1 1 6 1 6 6

 .

(Note that when working over the finite field Z7, the powers in the third and fourth rows
are all simplified modulo 7.) The determinant D of the matrix formed by the first four
columns of G is a Vandermonde determinant, thus by Theorem 4.7 in the Appendix,
D = (4 − 3)(4 − 2)(4 − 1)(3 − 2)(3 − 1)(2 − 1) 6= 0. This means the rank of G is 4, so
this Reed–Solomon code is a subspace of Z6

7 of dimension 4 and consists of pk = 74 = 2401
codewords. One such codeword is 4(123456) + (111111) + (116166) = (635463). �

This example may be generalized.

Definition 1.3. Fix a prime number p > 2 and an integer k with 0 ≤ k ≤ p. The [p−1, k]p
Reed–Solomon code is the code given by the generator matrix

G =



1 1 1 . . . 1
1 2 3 . . . p− 1
12 22 32 . . . (p− 1)2

13 23 33 . . . (p− 1)3

...
...

...
...

1k−1 2k−1 3k−1 . . . (p− 1)k−1

 .

It has pk codewords.

REED-SOLOMON CODES 5

In the [6, 4]7 Reed–Solomon code of Example 1.4 if one of the 74 code words is sent, due
to possible errors in transmission any of the 76 = 117, 649 words in Z6

7 could arrive. If the
received word is not in the code, we compare it to the words in the code, looking for the
codeword that differs from the received word in the least number of places. This leads to
the following definition.

Definition 1.4. Let x and y be words in Zn
p . The Hamming distance between x and y

is defined to be the number of places in which x and y differ, and is indicated by d(x,y).

Example 1.5: In the [6, 4]7 Reed–Solomon code let x = 253352 and y = 251330. Then
d(x,y) = 3. �

Something called a “distance” should satisfy certain properties, and the Hamming dis-
tance does. (Any binary function satisfying all three properties below is called a metric.)

We leave the proof of the following theorem to the reader.

Theorem 1.1. If d is the Hamming distance, then for all x, y and z in Zn
p , we have

(1) d(x,0) > 0 for x 6= 0; d(0,0) = 0,
(2) d(x,y) = d(y,x), and
(3) d(x, z) ≤ d(x,y) + d(y, z).

In Example 1.2 the received word was 10110, which is not a codeword. The distance
from it to the two words in the code are d(10110, 00000) = 3 and d(10110, 11111) = 2. It
makes intuitive sense to decode the word as the codeword that was closest to the received
message. This criterion for decoding is investigated in the next section.

1.2. Minimum Distance Decoding. So far we have associated with each linear code two
parameters, n and k. We now introduce a third parameter that will allow us to describe a
simple decoding method.

Definition 1.5. Let C be a code with k > 0, i.e., C has more than one word. The smallest
distance d = d(C) between different codewords of C is called the minimum distance of
C. When the minimum distance d of a code is known, we indicate the parameters of the
code as [n, k, d]p.

In the code from Example 1.2 there is only one pair of codewords to consider, and
d(00000, 11111) = 5, so d(C) = 5. Thus the repetition code of length five is a [5, 1, 5]2 code.

Example 1.6: The linear code C = {00000, 01101, 10100, 11001} over Z2 has basis
{01101, 10100}. Thus it is a [5, 2]2 code. To find the minimum distance of C using the
definition, we first tabulate the values d(x,y) for x 6= y in C:

6 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

d 00000 01101 10100 11001
00000 0 3 2 3
01101 3 0 3 2
10100 2 3 0 3
11001 3 2 3 0

Since the smallest non-zero value in the table is 2, d = 2 and C is a [5, 2, 2]2 code. �

We will use the [4, 1]2 repetition code C = {0000, 1111} ⊂ Z4
2 to introduce a decoding

method. When a word from C is transmitted, the received word may be any word in Z4
2.

A decoding method assigns to each (received) word in Z4
2 a (sent) word in C. We will

make this assignment using the notion of distance. The sphere in Z4
2 with center 0000 and

radius 1 is defined as usual:

S(0000, 1) = {x ∈ Z4
2 | d(x, 0000) ≤ 1} , i.e.,

S(0000, 1) = {0000, 10000, 0100, 0010, 0001}. Similarly, the sphere with center 1111 and
radius 1 is

S(1111, 1) = {1111, 0111, 1011, 1101, 1110}.
These spheres are disjoint since d(C) = 4 and the radius is 1. There are 10 vectors in the
union of the two spheres (5 vectors in each) and 16 vectors in Z4

2.

If a codeword x ∈ C is sent, it arrives as x′ ∈ Z4
2. If x′ is in one of the two spheres, we

decode it as the center of that sphere. If it is not in one of the spheres, we declare that we
have detected an error, but are not able to decode it. For example,

Word received Decode as Reason
1011 1111 1011 ∈ S(1111, 1)
0101 ? 0101 6∈ S(1111, 1)

⋃
S(0000, 1)

Notice that there is a single codeword closest to 1011, allowing us to correct the received
word 1011, but there are two different codewords at a distance of 2 from 0101, preventing
us from correcting the received word 0101.

This example illustrates an important principle we will use in decoding: when a received
word has a nearest codeword then we decode it as that codeword, while those received words
that are equidistant from two or more codewords we say cannot be decoded. In general, to
implement this method of minimum distance decoding we need to determine an integer
r such that

(1) r is small enough so that the spheres of radius r centered at the codewords are
disjoint, and

(2) r is as large as possible to be able to decode the largest possible number of received
words.

REED-SOLOMON CODES 7

In general, the best possible r can be shown to be r = bd−1
2
c, where d = d(C) is the

minimum distance of the code and b·c denotes the floor function.

For the [4, 1]2 repetition code above d = 4 and so r = b4−1
2
c = 1. (Notice that this is

best, for if r = 2 then 0101 would be in both spheres.) For the code in Example 1.6, d = 2
hence r = b2−1

2
c = 0, and, indeed, if r = 1 then spheres centered around 01101 and 1101

would overlap.

Minimum distance decoding reveals part of the role played by d in decoding, but to
decode this way requires that we calculate the distance of the received word to all the
codewords before we decide if and how to decode it. A less time consuming decoding
method is presented in the next subsection.

Since d plays a crucial role in any decoding algorithm we present an alternate way of
looking at it.

Definition 1.6. Let C be a code in Zn
p . The weight of a word x in C is denoted w(x) and

is the number of non-zero entries in x. The minimum weight of all the non-zero codewords
in C is called the weight of C and is denoted w(C).

Notice that the weight of a word x is the Hamming distance of x to the zero vector 0.
For example, in Z6

7, w(160034) = d(160034, 000000) = 4. A more general relation between
d and w follows.

Theorem 1.2. If C is a linear code, then d(C) = w(C).

Proof. If x and y are vectors in C such that d(x,y) = d(C), then x − y is a vector in C
with exactly d(C) non-zero entries. Thus w(x−y) = d(C) and consequently w(C) ≤ d(C).
To obtain the reverse inequality, let z be a vector in C such that w(z) = w(C). Then
d(z,0) = w(C) and therefore d(C) ≤ w(C). �

One way of calculating d is to calculate the weight of all the vectors in a code and look for
the minimum weight, as we did in Example 1.6. This can be slow since codes can be very
large. For example, a [11, 9]7 code has 79 = 40, 353, 607 codewords. The Reed–Solomon
family of codes have the advantage that one can follow a procedure to construct a code
that will have an a priori specified value of d as its minimum distance (and hence also as
its weight). This will be seen in Section 3.

Having considered a few different examples of codes leads us naturally to the question
of what makes a code “good”. Since transmission carries a cost in terms of time and
money, we want as high a ratio of information to codeword length as is practical. So we
would like k to be large relative to n. On the other hand, we would like our codewords
to be far apart to better allow us to determine from which codeword each received word
came. So we would like d to be large. If we suppose we have a fixed n, perhaps due

8 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

to the size of transmission channel, can we satisfy simultaneously both of these desires?
A fundamental result in coding theory says that the answer is no. That is, there is an
unavoidable tradeoff between the efficiency of information transmission (as measured by k)
and error detecting/correcting capability (as dependent upon d).

Theorem 1.3. (The Singleton Bound) Let C be a linear code of length n, dimension
k, and having minimum distance d over a finite field. Then d ≤ n− k + 1.

Proof. Let C be a [n, k, d]p code. Then C has pk codewords, each codeword x consisting of
n integers in Zp:

x = a1a2a3 . . . ad−1ad . . . an.

If we delete the first d − 1 integers from each codeword, we obtain a shorter word y =
ad . . . an. These shorter words are all different since d(C) = d. Hence there are pk of them.
Now the shorter words have length n− (d− 1) = n− d+ 1, and the total number of words
of this length is pn−d+1. Consequently pk ≤ pn−d+1, or k ≤ n−d+1, i.e., d ≤ n−k+1. �

Thus (for a fixed n) a larger k will result in a smaller bound for d. Thinking intuitively
that an [n, k, d]p code carries k “information bits” and n − k is “redundancy bits,” the
theorem indicates that to increase d we must increase the redundancy of the code and thus
decrease the amount of information being sent, whereas increasing the information that
can be sent reduces the code’s ability to detect errors.

1.3. Decoding by Standard Array. The method of look-up decoding using spheres
presented in the previous section does not make use of the linearity of the code and can
even leave some received words undecoded. Ideally we would like a rule that allows us to
decode any received word. If C is an [n, k]p code contained in Zn

p , then a sent codeword
x must be an element of C while a received word x′ can be any element in Zn

p . In the

following example we show how to partition the entire Zn
p into pk disjoint (column) sets,

each containing exactly one codeword in C. Each set will contain pn−k vectors. A received
word x′ will be in exactly one set (i.e., column) of the partition and it will be decoded as
the unique codeword in that set (the column heading). All words will be decoded.

Example 1.7: The vector space Z5
2 contains the linear [5, 2]2 code

C = {00000, 01101, 10100, 11001}.

We arrange the vectors in Z5
2 in four columns, each headed by a vector in C. The columns

are formed following a criteria that will be explained shortly.

REED-SOLOMON CODES 9

00000 01101 10100 11001

00001 01100 10101 11000
00010 01111 10110 11011
00100 01001 10000 11101
01000 00101 11100 10001
10010 11111 00110 01011
01010 00111 11110 10011
00011 01110 10111 11010

This table is called a standard array and contains all possible received words. If, for
example, we receive x′ = 11111, located in the second column, we decode it as x = 01101,
the codeword at the top of that column. While y = 11001 is another codeword a distance
2 from x′, the standard array makes it clear that x′ is to be decoded as x and not as y. �

To construct a standard array for a code C ⊆ Zn
p :

(1) List the elements of the code C = {c1 = 0, c2, c3, · · · , cpk} in the first row of the
table, with c1 = 0 in the first column.

(2) Choose a word e2 ∈ Zn
p of least weight that has not yet appeared in the table. Add

e2 to each of the codewords in the first row to create the second row of the standard
array. (In Example 1.7, e2 = 00001.)

(3) Create additional rows in this manner: to create the i-th row, choose a word ei ∈ Zn
p

of smallest weight that has not yet appeared in the table, and add it to each of the
codewords from the first row.

(4) Repeat this process until all possible received words in Zn
p have appeared in the

table. Since there are pk codewords and pn words, there will be pn−k rows and pk

columns in the array.

The resulting standard array has the form

A =



0 c2 c3 . . . cpk

e2 c2 + e2 c3 + e2 . . . cpk + e2
...

...
...

...
ei c2 + ei c3 + ei . . . cpk + ei
...

...
...

. . .
...

epn−k c2 + epn−k c3 + epn−k . . . cpk + epn−k .


Each row of a standard array for C is called a coset, and the first entry in each row (an
ei) is called a coset leader. While different choices of coset leaders may lead to different
tables, it turns out that decoding is always possible, that is, a received word can always be
decoded to some code word, no matter which standard array for the code is used.

10 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

Exercise 10 shows that different choices of coset leaders can lead to different standard
arrays and hence different decodings of the same word. But any standard array will place
each received word under a codeword that is as close as possible to the received word.

At this point we still have to look up each received word in the table in order to decode it.
We will see in Section 2 a method of decoding, called syndrome decoding, that applies
the theory of vector spaces to greatly speed the process.

Example 1.8: In the vector space Z4
3, consider the code C with generating matrix

G =

(
2 1 0 1
1 2 2 0

)
.

Z4
3 has a total of 81 vectors. Since the two rows of G are linearly independent, C has 32 = 9

vectors, enumerated in the first row of the table below. The entire table constitutes one
possible standard array for C.

0000 2101 1202 1220 0021 2122 2110 1211 0012

0001 2102 1200 1221 0022 2120 2111 1212 0010
0100 2201 1002 1020 0121 2222 2210 1011 0112
1000 0101 2202 2220 1021 0122 0110 2211 1012
0002 2100 1201 1222 0020 2121 2112 1210 0011
0200 2001 1102 1120 0221 2022 2010 1111 0212
2000 1101 0202 0220 2021 1122 1110 0211 2012
1100 0201 2002 2020 1121 0222 0210 2011 1112
1010 0111 2212 2200 1001 0102 0120 2221 1022

For example, with this array 1122 is decoded as 2122. �

Example 1.9: Let C = {0000, 1111, 2222} be a one dimensional code in Z4
3. Then C has

33 = 27 cosets, each containing three codewords. Can you give a very simple description
of coset decoding for this particular case? �

Standard arrays have the following properties.

Proposition 1.1. Let C be a linear [n, k]p code with standard array A. Then

(i) The coset leader of each row has minimum weight among all words in its coset.

(ii) Any word w in a standard array is the vector sum of the codeword c heading its
column and the coset leader e that leads its row.

(iii) Every word w ∈ Zn
p appears in A exactly once.

(iv) The number of rows of A is pn−k.

REED-SOLOMON CODES 11

(v) Two words w,v ∈ Zn
p lie in the same coset iff their difference w − v is a codeword.

(vi) Every word w ∈ Zn
p appears in a column headed by a codeword c ∈ C such that for

all r ∈ C, d(w, c) ≤ d(w, r).

Proof. Parts (i) and (ii) follow directly from the construction.

To prove part (iii), first note that clearly each word occurs at least once in the array,
otherwise we would not be finished with the construction of the array.

To show that each word in Zn
p occurs at most once in the array, suppose for the sake of

contradiction the same word x occurs in at least two different places in the array. Then
we have x = b + e = c + f for some codewords b, c ∈ C and some coset leaders e, f , with
either b 6= c or e 6= f . Since b = c if and only if e = f , we know that both b 6= c and
e 6= f . Without loss of generality, suppose that e was chosen as a coset leader earlier in the
construction than f .

Since C is closed under subtraction, y = b − c = f − e is also in C. Hence f = y + e,
with y ∈ C. This means f would have appeared in the row with coset leader e and could
not have been chosen as a coset leader for a later row. This contradiction completes the
proof of part (iii).

The proof of parts (iv), (v) and (vi) are left for Exercise 12. �

If we are interested in codes with a large number of codewords, relative to the length n,
then we want to know for given values of n, d and p how large pk can be. For the moment,
let us restrict ourselves to binary vectors, i.e., p = 2. Let A(n, d) denote the largest possible
size of any subset of Zn

2 such that d(x, y) ≥ d for all pairs of distinct vectors x,y taken
from the subset.

Example 1.10: If n = 3 there are 8 binary vectors of length 3. Let d = 2. Then we find
that any two vectors in the set

{000, 011, 110, 101}
are at a mutual distance of 2. Therefore A(3, 2) ≥ 4. Further inspection of all possible
subsets of Z3

2 shows that A(3, 2) = 4. �

Example 1.11: While A(17, 4) is not known, it is known that

2720 ≤ A(17, 4) ≤ 3276.

Therefore a [17, k, 4]2 code, linear or not, cannot have more than 3276 codewords. �

Finding the value of A(n, d) is a fundamental problem in coding theory that remains
open (that is, unsolved) for many values of n and d.

12 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

1.4. Exercises for Section 1.

(1) Give an example of a [7, 1, 7]2 code, and an example of a [7, 1, 7]3 code.
(2) (a) Enumerate two vectors in the code given in Example 1.3 different from those

given in the example.
(b) What is the redundancy of this code? How many information bits does it

carry?
(3) Enumerate five vectors in the [6, 4]7 Reed–Solomon code of Example 1.4 different

from those in the example.
(4) Find a vector in Z6

7 that is orthogonal to (that is, has zero dot product with) the
[6, 4]7 vector
a. 111111
b. 123456

(5) Find the minimum distance of the linear code C = {00000, 10202, 20101} in Z4
3.

(6) In Example 1.6,
(a) Find S(01101, 1) and S(11001, 1).
(b) Verify that the spheres are not disjoint.
(c) Explain in your own words how d(C) is related to the overlapping of the spheres

and how the overlapping of the spheres renders the minimum distance decoding
method ambiguous.

(7) Calculate the minimum weight of the code C = {00000, 01101, 10100, 11001} in Z5
2.

(8) For the code and the standard array of Example 1.8, decode the received message:

2010 1211 1220 0220.

(9) For the code of Example 1.7
(a) Complete the indicated rows in the following standard array

00000 01101 10100 11001

01000
10000
00010
00001
00110

(b) Decode 11111 using the standard array in a).
(c) Compare the result of part b) to the decoding of 11111 in Example 1.7. What

does this comparison tell you about the method of standard arrays?
(10) Write out a generating matrix for a [12, 4]13 Reed–Solomon code. How many code-

words does the code have? How many cosets are there in a standard array?
(11) Complete the proof of Proposition 1.1. (Hint: For part (iv), compare the number

of vectors in Zn
p to the number of vectors in C.)

(12) It is known that A(9, 4) = 20. What does this mean?

REED-SOLOMON CODES 13

(13) It is known that 2560 ≤ A(21, 6) ≤ 4096.
(a) Is it possible to find a binary code of length 21, minimum distance 6 or more,

and 500 codewords?
(b) State an open problem in Coding Theory.

(14) It is known that the [6, 4]7 Reed–Solomon Code of Example 1.4 has d = 3.
(a) How many vectors are there in this code?
(b) What can be said about the mutual distance between the vectors in this code?
(c) What inequality can we conclude for A(6, 3) for codes in A6

7?
(15) Find the minimum distance of the linear code C generated by G =

(
2 1

)
in Z2

3.

2. The Parity Check Matrix and Syndrome Decoding

2.1. The Parity Check Matrix. We have described two different ways of defining a linear
code: (1) listing the elements of a code as a subset C ⊆ Zn

p that satisfies certain linearity
properties, and (2) using a generating matrix G. We now describe a third way of defining
a linear code: (3) using a parity check matrix H. We will use this parity check matrix to
introduce the method of decoding called syndrome decoding; to present a second definition
of Reed–Solomon codes; and to understand some of the general properties of codes.

Definition 2.1. A parity check matrix for a [n, k]p code C is an (n− k)× n matrix H
such that C = {x ∈ Zn

p : HxT = 0}, i.e., CT = {xT : x ∈ C} = Null(H), where Null(H) is

the nullspace1 of H and xT denotes the transpose of x. If matrix G is a generating matrix
for a code C, and if H is a parity check matrix for code C, we also say that H is a parity
check matrix for the matrix G.

Two quick remarks are in order. First, any code defined by a parity check matrix is
necessarily a linear code, i.e., C will be a subspace of Zn

p . Second, for any given linear code
C we can find a (non-unique) parity check matrix HC ; conversely, any matrix H determines

a (unique) linear code CH = [Null(H)]T .

Example 2.1: We show how to calculate a parity check matrix H for the code de-
fined in Example 1.6. Recall that C = {00000, 01101, 10100, 11001} over Z2 has basis
{01101, 10100}, and is thus a [5, 2]2 code with the (non-unique) generating matrix

G =

(
1 0 1 0 0
0 1 1 0 1

)
.

Since the rows of H must be orthogonal to exactly those vectors that are in C, we must
solve the parity check equations resulting from the matrix equation Gx = 0. Written

1The nullspace is sometimes called the kernel, and consists of the vectors x such that xH = 0.

14 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

out explicitly, we need

(
1 0 1 0 0
0 1 1 0 1

)
x1

x2

x3

x4

x5

 =

(
0
0

)

which results in the parity check equations

x1 + x3 = 0 and x2 + x3 + x5 = 0.

Hence x1 = x3 and x2 = x3 + x5, with x3, x4, and x5 all free variables. (Recall that we are
working over Z2, so that −x3 = x3, and so on.) In matrix form, we have

x1

x2

x3

x4

x5

 = x3


1
1
1
0
0

+ x4


0
0
0
1
0

+ x5


0
1
0
0
1

 .

Therefore, the solution space for this matrix equation (that is, the null space of the matrix
G) has basis 


1
1
1
0
0

 ,


0
0
0
1
0

 ,


0
1
0
0
1


 .

Transposing these vectors gives the rows of a parity check matrix: H =

1 1 1 0 0
0 0 0 1 0
0 1 0 0 1

 . �

To understand why this method of calculating H from G works correctly, given a linear
code C ⊆ Zn

p we define a new vector subspace of Zn
p , i.e., a new code.

Definition 2.2. The dual code to code C is C⊥ = {y ∈ Zn
p : x · y = 0 for all x ∈ C}.

This corresponds exactly to the definition of the orthogonal complement of any vec-
tor subspace W within any finite-dimensional vector space V , and, like the orthogonal
complement of a subspace, C and C⊥ share elegant relations.

Proposition 2.1. (i) If C is a linear code, then C⊥ is also a linear code.

(ii) Suppose that C ⊆ Zn
p is a linear code with a spanning set of vectors S ⊆ C and

x ∈ Zn
p . Then x ∈ C⊥ if and only if x · s = 0 for every s ∈ S. In particular, if G is a

generating matrix for code C, then x ∈ C⊥ if and only if x · gi = 0 for every row gi of G.

REED-SOLOMON CODES 15

(iii) For any matrix A, (Row(A))⊥ = Null(A). In particular, if G is a generating matrix
for a code, then (Row(G))⊥ = Null(G).

(iv) If G is a generating matrix for code C, then G is a parity check matrix for C⊥.

(v) If H is a parity check matrix for C, then H is a generating matrix for C⊥.

(vi) If dim(C) = k, then dim(C⊥) = n− k.

This proposition shows that calculating a basis for the null space of any generating matrix
G for C is equivalent to calculating a basis for the dual code C⊥. The matrix H whose row
space equals C⊥ then serves as a parity check matrix for C. The reader is asked to prove
this proposition in the exercises.

Before exploring further the connections between H and CH we will need the following
definition.

Definition 2.3. A k × n matrix G is said to be in row-reduced echelon form if

(1) The first non-zero entry of each non-zero row of G is a 1.
(2) Each leading 1 is to the right of the leading 1’s above it.
(3) A column containing a leading 1 consists of 0’s otherwise.
(4) Any rows of 0 occur at the bottom of G.

Example 2.2: The matrix G =

1 2 0 2
0 0 1 0
0 0 0 1

 in Z3 is not is row-reduced echelon form,

but can be put into this form by adding the third row to the first. �

In general, a matrix not in row-reduced echelon form may be transformed into one by
performing elementary row operations on it.

We now consider examples that further illustrate the connection between H and CH .

Example 2.3: Consider the code C ⊆ Z4
3 that was defined in Example 1.8 using the

generating matrix G =

(
2 1 0 1
1 2 2 0

)
. To find H, instead of solving the matrix equation

Gx = 0, we solve G′x = 0, where G′ =

(
1 2 0 2
0 0 1 2

)
is the row-reduced echelon form

of G. This is easily done (see Example 2.1) and produces H =

(
1 1 0 0
1 0 1 1

)
as a parity

check matrix for this code. �

16 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

Now suppose that a parity check matrix H is given and we want to use it to find a
generating matrix for the code CH . If we solve the matrix equation HxT = 0, then
CH =

{
x ∈ Z4

3 : xT is a solution to HxT = 0
}
.

Example 2.4: We continue with Example 2.2, but assume this time that the parity check

matrix H =

(
1 1 0 0
1 0 1 1

)
is given and we must find a generating matrix GH . We start by

finding a basis for the solution space of the matrix equation HxT = 0:

(
1 1 0 0
1 0 1 1

)
x1

x2

x3

x4

 =

(
0
0

)
.

Solving the parity check equations, we find
x1

x2

x3

x4

 = x1


1
2
2
0

+ x4


0
0
2
1

 .

Thus, a generating matrix for this code is CH =

(
1 2 2 0
0 0 2 1

)
, which is row equivalent to

the generating matrix G given for this code originally. �

As we have seen, finding the parity matrix for a given code, and finding the code de-
termined by a given parity check matrix, are both straightforward but tedious tasks. The
following proposition gives us a faster method for findingH whenG is in the form prescribed
in the following proposition.

Proposition 2.2. If G is a k × n matrix with row-reduced echelon form [Ik|A] then H =[
−AT |In−k

]
is a parity check matrix for G. (Here [B|C] is the matrix whose first columns

are those of B and whose last columns are those of C.)

Proof. Let H =
[
−AT |In−k

]
. Since A is k× (n− k), AT is (n− k)× k, so H is (n− k)×n.

Further

HGT = [−AT |In−k][Ik|A]T

= [−AT |In−k]
[
Ik
AT

]
= −AT + AT

= [0],

REED-SOLOMON CODES 17

where [0] is the zero matrix. So G is in the null space of H. Finally, since H has rank
(n− k), as it has n− k leading 1’s, and G has rank k, G must equal the null space of H.
Therefore H = [−AT |In−k] is indeed a parity check matrix for G. �

So to find H we do not need to solve a system of equations, but in general we do need
to row reduce G to put it into the form [Ik|A]. We call [Ik|A] the standard form of G.

Example 2.5: In Example 2.1 above, G is already in standard form: G =

(
1 0 1 0 0
0 1 1 0 1

)
=

[Ik|A], where k = 2 and A =

(
1 0 0
1 0 1

)
. Here n− k = 5− 2 = 3 and −AT =

1 1
0 0
0 1

 . By

Proposition 2.2, this code has as a parity check matrixH =
[
−AT |In−k

]
=

1 1 1 0 0
0 0 0 1 0
0 1 0 0 1

 .

This agrees exactly with the matrix H we found earlier by solving the parity check equa-
tions directly. (In general, the two different methods may yield two different parity check
matrices, but any two such parity check matrices for the same code must be row equivalent,
and therefore have the same null space.) �

Example 2.6: We use Proposition 2.2 to quickly find a parity check matrix for the code

in Example 1.4. Working in Z7, we had G =


1 1 1 1 1 1
1 2 3 4 5 6
1 4 2 2 4 1
1 1 6 1 6 6

 as a generating matrix

for a [6, 4]7 Reed–Solomon code. The row reduced form of G is G′ =


1 0 0 0 6 3
0 1 0 0 4 1
0 0 1 0 1 1
0 0 0 1 4 3

 ,

which is I4 followed by A =


6 3
4 1
1 1
4 3

 . To find an H we transpose A and find the negative

(in Z7), which is −AT =

(
1 3 6 3
4 6 6 4

)
. So H =

(
1 3 6 3 1 0
4 6 6 4 0 1

)
. �

2.2. Syndrome Decoding. For codes that are subsets of Zn
p with pn relatively small the

standard array introduced in Section 1 can be used to decode a received message by simply
looking up each received word in the array. However, even a moderately-sized code such as
the [6, 4]7 Reed-Solomon code will have a standard array with pn = 76 = 117, 649 entries

18 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

(pn−k = 49 rows and pk = 2, 401 columns), and the [255, 223]2 Reed–Solomon code, a
version of which is commonly used to correct errors on compact disks, has a standard array
with 2255, or approximately 6 × 1076 entries! Clearly we need a more efficient decoding
method.

The key idea of syndrome decoding is quite simple. Consider a received word r, and
let e be its coset leader in a standard array for C and c ∈ C the codeword heading r’s
column. Then r = c + e. So if H is a parity matrix for C then

Hr = H(c + e) = Hc +He = 0 +He = He.

In other words, if e is the coset leader of r, then Hr = He. If we had a list of all the
vectors He, we could then find Hr in that list, and would then know that r− e = c is the
correct decoding of r. This motivates the following definition.

Definition 2.4. Given a linear code C ⊆ Zn
p and a parity check matrix H for C, the

syndrome of any (received word) r ∈ Zn
p is syn(r) = [Hr]T .

The proof of the following proposition is straightforward.

Proposition 2.3. Suppose that r ∈ Zn
p and that C ⊆ Zn

p is a linear code. Then

(i) syn(r) ∈ Zn−k
p .

(ii) r ∈ C if and only if syn(r) = 0.

(iii) If r = c + e and c ∈ C, then syn(r) = syn(e).

Using syndrome decoding is relatively simple, but there is a bit of overhead as beforehand
we must, once and for all, agree on a syndrome table. This table has two columns: a
syndrome column, and a coset leader column. The syndrome column will consist of every
possible syndrome s ∈ Zn−k

p .

If we happen to have a list of coset leaders already available (for instance, from a standard
array) we can simply compute the syndromes of those coset leaders, and hence have the
table. Otherwise we take the following steps to form the table row by row.

(1) The first row is the zero vector, the coset leader for the coset consisting of the
codewords of C, and its syndrome is 0 ∈ Zn−k

p .
(2) Of the remaining unsampled vectors in Zn

p , choose one v of least weight and compute
syn(v). If syn(v) does not appear in the syndrome column declare v to be a coset
leader and add a row consisting of v and its syndrome to the table.

(3) Continue step (2) until we have found a coset leader for all of the pn−k possible
syndromes.

REED-SOLOMON CODES 19

Once having created the syndrome table, syndrome decoding is simple. For each code-
word r ∈ Zn

p that is received, compute syn(r) = HrT and from the syndrome table find
the coset leader e such that syn(e) = syn(r). Then c = r− e is the correct decoding of r.

Example 2.7: Let us create a syndrome table for the [5, 2]2 code C ⊆ Z5
2 that may be

listed explicitly as C = {00000, 01101, 10100, 11001}. In Example 1.7 we found a standard
array for this code, so we may read off the coset leaders directly from the first column of the

standard array. In Example 2.1 we found H =

1 1 1 0 0
0 0 0 1 0
0 1 0 0 1

 is a parity check matrix

for this code. Multiplying each coset leader by H allows us to create a syndrome table.

e syn(e)T

00000 000
00001 001
00010 010
00100 100
01000 101
10010 110
01010 111
00011 011

Now suppose that we receive r = 10011. We compute syn(r) = HrT = (1, 1, 1)T . Since
(1, 1, 1)T is the syndrome of e = 01010, we decode the received word r as c = r − e =
10011− 01010 = 11001. (Referring back to the standard array in Example 1.7, we see that
r = 10011 is indeed found in the array column headed by codeword c = 11001.) Notice
that we only had to look up eight entries in the syndrome table versus thirty-two in the
standard array, so even in this small example, syndrome decoding was faster. �

As the code get larger, this advantage increases. The [6, 4]7 Reed-Solomon code men-
tioned at the beginning of this subsection has a standard array of 76 = 117, 649 but its
syndrome table (with two columns of 72 = 49 rows each) has only 98 entries. Clearly the
syndrome table is easier to deal with. Similarly the [255, 223]2 Reed-Solomon code has
a syndrome table of two columns with 232 rows. While using a table of 233 entries (ap-
proximately 8.6 billion) to decode may seem cumbersome, it far, far faster than using the
standard array, which has 2255 ≈ 6× 1076 entries!

2.3. A Second Presentation of Reed–Solomon Codes. So far we have seen examples
of [6, 4]7 and [4, 2]5 Reed–Solomon codes, each defined by a generating matrix. We now
describe a more general “recipe” that allows us to consider the Reed–Solomon codes as a

20 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

whole family of codes RS(k, p), where, as usual, we fix a prime p and an integer k with
1 ≤ k ≤ p− 1.

Definition 2.5. The Reed–Solomon code RS(k, p) is the subspace of Zp−1
p given by

RS(k, p) =
{(
f(1), f(2), . . . , f(p− 1)

)
: f(x) ∈ Zp[x], deg

(
f(x)

)
< k
}
.

Informally, we will think of an RS(k, p) code as the image in Zp−1
p of all polynomials with

coefficients modulo p and degree less than k via a special type of linear transformation.

We now proceed to give examples implementing this definition. (We will present the
linear transformation in Example 4.15.)

Example 2.8: Suppose we have fixed p = 7 and k = 4. Then

RS(4, 7) = {
(
f(1), f(2), . . . , f(6)

)
: f(x) ∈ Z7[x], deg

(
f(x)

)
< 4}.

To give an example of a codeword we first need a polynomial over F7 of degree less
than 4, such as f = x3 + 4x2 + 3x + 6. The corresponding codeword in RS(4, 7) is then(
f(1), f(2), . . . , f(6)

)
= (0, 0, 5, 0, 5, 5).

RS(4, 7) was introduced in Example 1.4 via the generating matrix

G =


1 1 1 1 1 1
1 2 3 4 5 6
12 22 32 42 52 62

13 23 33 43 53 63

 .

So since the two definitions are equivalent, 005055 should be obtained as a linear combina-
tion of the rows of G. And, indeed, we have

u×G =
(
6 3 4 1

)
×


1 1 1 1 1 1
1 2 3 4 5 6
12 22 32 42 52 62

13 23 33 43 53 63

 =
(
0 0 5 0 5 5

)
.

The vector u is obtained by listing the coefficients of f when its terms are written in order
of increasing degree. Thus using the third column in the product above yields

6 · 1 + 3 · 3 + 4 · 32 + 1 · 33 = f(3) = 5

and similarly for the remaining entries of u×G. �

What are the parameters of RS(k, p)? Clearly n = p − 1. The following proposition
shows that the dimension of RS(k, p) is precisely k, so that RS(k, p) is a [p− 1, k]p code.

Proposition 2.4. The dimension of RS(k, p) is k.

REED-SOLOMON CODES 21

Proof. Letting Lk−1
p = {f ∈ Zp[x] : deg(f) < k}, then Lk−1

p is a subspace of Zp[x] of
dimension k, and

RS(k, p) =
{

(f(1), f(2), . . . , f(p− 1)) : f ∈ Lk−1
p

}
.

(Note that the superscript k − 1 reminds us of the maximum possible degree for f .)

Define T : Lk−1
p → Zp

p−1 by

T (f) = (f(1), f(2), . . . , f(p− 1)) .

Then T is a linear transformation (by Example 4.15) whose image in Zp
p−1 is precisely

RS(k, p). Thus

dim (RS(k, p)) = dim (image(T)) ≤ dim
(
Lk−1
p

)
= k.

To show that dim (RS(k, p)) is indeed k we need to show that T is one-to-one. So suppose
T (f) = T (g). Then T (f − g) = 0, i.e.,

T (f − g) = ((f − g)(1), (f − g)(2), . . . , (f − g)(p− 1)) = (0, 0, . . . , 0) .

This means f − g is a polynomial of degree at most k − 1 with at least p− 1 roots. Now,
just as over R and C, the number of roots of a non-zero polynomial with coefficients in Zp

must be no larger than its degree. So if f − g is non-zero we must have p− 1 ≤ k− 1. But
by definition of RS(k, p), 1 ≤ k ≤ p − 1, or k − 1 ≤ p − 2 < p − 1. Thus f − g cannot
be non-zero, i.e., f − g is the zero-polynomial, so f = g and T is one-to-one. This makes
RS(k, p) isomorphic to Lk−1

p and so both spaces must have the same dimension, k. �

As stated in Section 1, on one hand we would like both k and d to be large (as this
increases the amount of information we can send and number of errors we can detect),
while on the other hand the Singleton Bound (Theorem 1.3) states that for any linear code
k+d ≤ n−1. So the best we can do is to have d = n−k−1. Codes for which this equality
holds are called Maximum Distance Separable or MDS codes. One of the attractive
properties of Reed–Solomon codes is that it is an MDS code.

Theorem 2.1. A Reed–Solomon Code is an MDS code.

Proof. In view of the Singleton Bound, we only need to show that if d is the minimum
distance of RS(k, p), then d ≥ n− k + 1 or k − 1 ≥ n− d.

If d is the minimum distance, it is also the minimum weight of RS(k, p). Let f ∈ Lk−1
p be

such that T (f) is of minimum weight in RS(k, p). Then T (f) = (f(1), f(2), . . . , f(p− 1))
has exactly d non-zero entries, or, equivalently, n − d zero entries. The polynomial f
therefore has at least n − d roots. This means f has degree at least n − d, and since the
polynomials in Lk−1

p have degree at most k − 1, we have

n− d ≤ deg(f) ≤ k − 1.

Therefore, n− k + 1 ≤ d and the theorem is proved. �

22 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

2.4. Exercises for Section 2.

(1) Show that if C is a code for which matrix H is a parity check matrix, then C must
be a linear code, that is, a vector subspace of Zn

p .
(2) The parity check matrix for a code C is sometimes defined as a matrix H such that

C = {x ∈ Zn
p : xHT = 0}. Explain why this is equivalent to our definition.

(3) Verify that for the parity check matrix H that we found in Example 2.1, and for
every vector b in the basis given for that code, the equation HbT = 0 holds true.
Why does this imply that HxT = 0 holds true for every x ∈ C?

(4) Consider in both parts of this question the Hamming [7, 4]2 code C ⊆ Z7
2 with basis

B = {1000110, 0100101, 0010111, 0001011} .
(a) Find a parity check matrix H for this code by solving the system of parity

check equations directly.
(b) Write down a generating matrix G for this code, and then use Proposition 2.2

to find a parity check matrix H for this code.

(5) (a) Suppose that a code C ⊆ Z5
3 has generating matrix G =

(
1 2 1 2 2
0 1 2 0 1

)
.

Find a parity matrix H for code C.

(b) Suppose that a code D ⊆ Z5
3 has parity check matrix P =

(
1 2 1 2 2
0 1 2 0 1

)
.

Find a generating matrix M for code D.
(c) Compare matrix H from part (a) with matrix M from part (b). What does

this tell you about codes C and D?
(6) Find a generating matrix G for the code C in Z5

5 whose parity matrix is H =1 0 0 2 1
0 1 0 1 2
0 0 1 3 4

 . Hint: find a basis for Null(H), and then define G to have the

basis vectors for Null(H) as its rows. You should explain why doing this works.
(7) Prove all parts of Proposition 2.1. Hint: you may find it helpful to refer to a linear

algebra textbook to prove part (iii), looking up orthogonal complement in the index.

(8) Suppose that G =

(
1 3 5 0 2
0 2 4 6 1

)
is a generating matrix for code C ⊂ Z5

7. Find

at least three other matrices G1, G2, and G3 that are also generating matrices for
this same code C.

(9) Show that if the matrix G′ is formed from the matrix G by elementary row opera-
tions, then the code generated by G′ is the same as the code generated by G.

(10) Suppose that the vectors

00010, 10220, 01001, 20100, 02022, 11211, 21121, 12202, 22112

constitute one row of a standard array for a code C (with 00010 being the coset
leader). Find the complete set of all codewords in C, and explain how you know
that your answer is correct.

REED-SOLOMON CODES 23

(11) A syndrome table for the Hamming code H2(3) defined in Example 1.3 is given
below.

(a) Use this table to decode the following received words: 1100110, 1010011,
1101001, 0010111.

(b) Verify that 0010100 has the same syndrome as 1000001. Note that these words
both have a weight of two. What does this tell us about the maximum number of
errors that we can correct using this code?

e Transpose of syn(e) = HeT

0000000 0000
0000001 0001
0000010 0010
0000011 0011
0000100 0100
0000101 0101
1100000 0110
0001000 0111
0010000 1000
1000100 1001
1001000 1010
0100000 1011
1000001 1100
1000000 1101
1000010 1110
1000010 1111

(12) Follow the outline below to create a syndrome table for the code C ⊆ Z4
3 defined

in Example 1.8. We saw in Example 2.2 that a parity check matrix for C is H =(
1 1 0 0
1 0 1 1

)
.

(a) How many rows should the standard array (and hence the syndrome table)
have? Explain your calculations.

(b) List all possible errors e with weight 0 or 1. How many are there?
(c) For each possible error you found in part (b), compute the syndrome for that

error. Note that if two possible errors e, f have the same syndrome, that means
that they are in the same coset (i.e., e + C = f + C).

(d) Continue computing syndromes of possible errors in order of ascending weight
until you have found the number of rows with distinct syndromes that we are
looking for. You will need to choose a few possible errors of weight 2 in addition to
computing the syndromes for possible errors of weight 0 or 1.

(13) Find the codeword in RS(4, 7) generated by polynomial g = 2x3 + x2 + 5x + 3.
Write out the corresponding matrix equation showing how this codeword could also

24 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

be generated using the generating matrix for this code given earlier. (Hint: Follow
Example 2.7.)

(14) Prove Proposition 2.3.
(15) (For those who have studied group theory.) Show that

(a) If V is a vector space, then 〈V,+〉 forms a group, where the operation + is
defined as vector addition.

(b) If W is a vector subspace of V , then 〈W,+〉 forms a normal subgroup of 〈V,+〉.
Note that this allows us to define the quotient group 〈V/W,⊕p〉. Explain how
a “coset” in coding theory is related to a “coset” in group theory.

3. Generating Polynomials

3.1. Reed–Solomon Codes Generated by One Polynomial. We have seen two ways
of defining Reed–Solomon codes: using a generating matrix (in Section 1) and using a
set of polynomials (in Section 2). We now give a third presentation, one which has the
advantage of allowing the user to determine the parameter values in advance of defining
the code. This gives the code designer greater control over the desired balance of efficiency
of information transmission (as measured by k) and the error detecting and correcting
capability (as dependent upon d) that was discussed prior to the statement of Theorem
1.3, The Singleton Bound.

First, a definition. We say that an element α of Zp is a primitive root if multiplying
α by itself enough times produces all the non-zero elements of Zp. For example, in Z7, 3
is a primitive root since 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5 and 36 = 1, whereas 2 is
not a primitive root. (As our concerns are elsewhere, you will be given the primitive root
whenever necessary.)

Now we show how to construct a [p− 1, p− δ]p Reed-Solomon code. Choose an integer
δ, 1 ≤ δ ≤ p− 1, and choose α ∈ Zp that is a primitive root. Then set

g(x) = (x− α)(x− α2)(x− α3) · · · (x− αδ−1),

so g(x) ∈ Zp[x] is a polynomial of degree δ − 1 that has the first δ − 1 powers of α as its
roots. Multiplying out this product to see g as a polynomial, we have

g(x) = a0 + a1x
1 + a2x

2 + a3x
3 + · · ·+ aδ−2x

δ−2 + xδ−1

REED-SOLOMON CODES 25

for some a0, a1, · · · , aδ−2 ∈ Zp. We then define a code RSp(α, δ) by choosing the (p− δ)×
(p− 1) generating matrix

(1) G =



a0 a1 a2 a3 · · · aδ−2 1 0 0 0 . . . 0
0 a0 a1 a2 a3 · · · aδ−2 1 0 0 . . . 0
0 0 a0 a1 a2 a3 · · · aδ−2 1 0 . . . 0
0 0 0 a0 a1 a2 a3 · · · aδ−2 1 . . . 0
...

...
...

.
...

0 0 0 · · · 0 a0 a1 a2 · · · aδ−2 1 0
0 0 0 0 · · · 0 a0 a1 a2 · · · aδ−2 1


,

a matrix with p − 1 entries in each row. (Although G may look complicated, each of its
rows is simply a shift of the row above. Thus this form of Reed–Solomon is a special case
of so-called “cyclic” codes, codes with generating matrices formed by such cyclic shifts.)

Example 3.1: Fix p = 7 and take α = 3 as the primitive root. If we choose δ = 3, then
δ − 1 = 2 so g(x) = (x − 3)(x − 32) = (x − 3)(x − 2) = x2 − 5x + 6 = 6 + 2x + x2. The
coefficients of g are (6, 2, 1) and the matrix G should have dimension (p − δ) × (p − 1) =
(7− 3)× (7− 1) = 4× 6. So

G =


6 2 1 0 0 0
0 6 2 1 0 0
0 0 6 2 1 0
0 0 0 6 2 1


is a generating matrix for the code RS7(3, 3). �

Example 3.2: Fix p = 11 and take α = 2 as the primitive root. If δ is choosen to be 6,
then

g(x) = (x− 2)(x− 22)(x− 23)(x− 24)(x− 25)

= (x− 2)(x− 4)(x− 8)(x− 5)(x− 10)

= 1 + 9x+ 2x2 + 8x3 + 4x4 + x5.

The dimensions of the matrix G are (p − δ) × (p − 1) = 5 × 10. The first row of G is
(1, 9, 2, 8, 4, 1, 0, 0, 0, 0) and the subsequent rows are wrapped until all the 0’s have moved
to the front.

G =


1 9 2 8 4 1 0 0 0 0
0 1 9 2 8 4 1 0 0 0
0 0 1 9 2 8 4 1 0 0
0 0 0 1 9 2 8 4 1 0
0 0 0 0 1 9 2 8 4 1

 .

Then RS11(2, 6) is generated by G. �

26 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

Since a0 is non-zero, each of the rows will have a leading 1 when G is put into row-
reduced form. So the generating matrices produced this way have rank equal to p − δ.
Thus RSp(α, δ) is a linear code in Zp−1

p of dimension p− δ, i.e., a [p−1, p− δ]p code. As we
will see in Proposition 3.1 below, the presence of a fair number of zeros in G facilitates the
calculation of the parity check matrix H of RS(α, δ). Once we have H, we can implement
the syndrome decoding method.

3.2. A Parity Check Matrix for RS(α, δ). We saw in Section 2.1 that any linear code
with generating matrix G (of size k × n) has a parity check matrix H, an (n − k) × n
matrix such the row space of G is the transpose of Null(H). When the code has no special
properties, to find H we must solve Gx = 0, which involves first row reduction and then
solving the resulting system of equations. Proposition 2.2 gave a simpler method of finding
H that does not require solving any systems of equations but does require that we row
reduce G and thereby put it into standard form. We now show that when G is given by a
generating polynomial even this row reduction is unnecessary.

Proposition 3.1. A parity check matrix for RSp(α, δ) is the (δ−1)×(p−1) Vandermonde
matrix

H =


1 α α2 α3 · · · αi · · · αp−2

1 α2 α4 α6 · · · α2i · · · α2(p−2)

1 α3 α6 α9 · · · α3i · · · α3(p−2)

...
...

...
...

...
...

1 αδ−1 α2(δ−1) α3(δ−1) · · · αi(δ−1) · · · α(p−2)(δ−1)

 .

In Section 1 the Reed–Solomon codes came from generating matrices that are Vander-
monde matrices (with rows that are powers of the elements of Zp). In this generating
polynomial presentation of Reed–Solomon it is the parity check matrices that are Vander-
monde matrices (with rows that are the powers of a primitive root).

Proof. To begin showing that the transpose of each row of the generating matrix G for
RSp(α, δ) is in Null(H), write

g1 = (g0, g1, g2, . . . , gp−2) = (a0, a1, . . . , aδ−1, 1, 0, . . . , 0)

for the first row of G. We need to show that Hg1
T = 0. Let

h1 = (h0, h1, h2, . . . , hp−1) = (1, α, α2, . . . , αp−2)

be the first row of H. Then

h1g1
T = g1 · h1 = g0h0 + g1h1 + g2h2 + · · ·+ gp−1hp−1

= a0 + a1α + a2α
2 + · · ·+ aδ−1α

δ−1

= g(α).

Since g was chosen to have α as a root, this is 0. Hence h1 · gT1 = 0.

REED-SOLOMON CODES 27

Similarly, h2g
T
1 = g(α2), since h2 is the even powers of α, and this is 0, again by choice

of g. More generally, hjg
T
1 = g(αj) = 0, for 1 ≤ j ≤ δ − 1. Thus gT1 is in Null(H).

Next, notice that the second row, g2, of G consists of the coefficients of xg(x) followed
by 0’s. So h1g

T
2 = α2g(α) = 0, and, similarly, hjg

T
2 = α2g(αj) = 0 for 1 ≤ j ≤ δ − 1.

Finally, i-th row of G consists of the coefficients of xi−1g(x) followed by 0’s, so by dealing
carefully with the subscripts and exponents we can show hjg

T
i = (αj)ig(αj) = 0. Therefore

the transpose of every row of G is in Null(H), and so H is a parity check matrix for
Rp(α, δ). This shows that Row(G)T ⊆ Null(H). Finally, by dimension considerations, we
have Row(G)T = Null(H). �

Example 3.3: Using the parameters from Example 3.1, p = 7, α = 3 and δ = 3,

H =

(
1 3 32 33 34 35

1 32 34 36 38 310

)
=

(
1 3 2 6 4 5
1 2 4 1 2 4

)
is a parity check matrix for RS7(3, 3). �

Example 3.4: In Example 3.2 we had p = 11, α = 2 and δ = 6, so

H =


1 2 22 23 24 25 26 27 28 29

1 22 24 26 28 210 212 214 216 218

1 23 26 29 212 215 218 221 224 227

1 24 28 212 216 220 224 228 232 236

1 25 210 215 220 225 230 235 240 245

 =


1 2 4 8 5 10 9 7 3
1 4 5 9 3 1 4 5 9
1 8 9 6 4 10 3 2 5
1 5 3 4 8 1 5 3 4
1 10 1 10 1 10 1 10 1


is a parity check matrix for RS11(2, 6). �

Corollary 3.1. Syndrome decoding may be performed on RSp(α, δ) without having to first
row reduce G.

3.3. The Minimum Distance of RSp(α, δ). In Section 3.1 we used the polynomial g(x)
whose roots are the first (δ − 1)’st powers of α to create a [p − 1, p − δ]p code, that is, a
linear subspace of Zp−1

p of dimension p− δ. What is the minimum distance of this code?

We know the minimum distance is at most δ, since, by Theorem 1.2, for linear codes
the minimum distance and the minimum weight agree and G is made up of rows with at
most δ non-zero entries. Why is the minimum distance exactly δ? Perhaps it is simplest
to answer this question by first proving a result that is interesting in its own right.

Proposition 3.2. Suppose C is a linear code and H is a parity matrix for C. Then the
minimum weight of C is d if and only if H has d linearly dependent columns and every
choice of d− 1 columns from H gives a linearly independent set.

28 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

Proof. The key idea of the proof is that if H is a (n − k) × n matrix, then for any vector
v of Zn

p , HvT produces a linear combination of columns of H, while conversely, any linear

combination of the columns H can be expressed as HwT for some vector w ∈ Zn
p . Hence,

a linear dependence of, say, e columns of H corresponds to a vector in C with e non-zero
coefficients, that is, a vector of weight e.

With this understanding, and recalling that CT is the null space of H, “H has d linearly
dependent columns” is equivalent to “there is an element of C of weight d,” while “every
choice of d − 1 columns from H gives a linearly independent set” is equivalent to “C
contains no non-zero elements of weight less than d”. (Note that the weight of a vector is
not changed by taking its transpose.) �

Proposition 3.2 tells us that to compute d for RSp(α, δ) we must study the linear de-
pendence/independence of the columns of a matrix of the form appearing in Proposition
3.1. First, every set of δ columns is linearly dependent because each column is in Zδ−1

p .
To see that every choice of δ − 1 columns produces a linearly independent set, let H ′ be a
(δ − 1)× (δ − 1) matrix consisting of some choice of columns. The top row of H ′ consists
of various powers of α, with the remainder of each column consisting of powers of that first
entry. So if we factor out of each column its top term, we produce a square Vandermonde
matrix. Calling this new matrix K, then det(H ′) = πdet(K), where π is the product of
the elements in the first row of H ′, and det(K) 6= 0. Therefore det(H ′) 6= 0. Remembering
where we started, this means that every choice of δ−1 columns from H produces a linearly
independent set. By Proposition 3.2, this shows that the weight of RS(α, δ) is δ. We have
proven

Corollary 3.2. The minimum distance of RSp(α, δ) is δ. That is, for RSp(α, δ), we have
d = δ.

Example 3.5: In the code from Example 3.2 we had

H =


1 2 22 23 24 25 26 27 28 29

1 22 24 26 28 210 212 214 216 218

1 23 26 29 212 215 218 221 224 227

1 24 28 212 216 220 224 228 232 236

1 25 210 215 220 225 230 235 240 245

 .

There are five rows, so any choice of six or more column will produce a linearly depen-
dent set. Now suppose we pick exactly five columns, say the 2nd, 3rd, 4th, 7th and 9th.

As in the proof let H ′ consist of these columns: H ′ =


2 24 25 27 29

22 28 210 214 218

23 212 215 221 227

24 216 220 228 236

25 220 225 235 245

 . Then

REED-SOLOMON CODES 29

det(H ′) = 2 · 24 · 25 · 27 · 29det(K), where K =


1 1 1 1 1
2 24 25 27 29

22 28 210 214 218

23 212 215 221 227

24 216 220 228 236

 . Clearly K is a

Vandermonde matrix, and so it is invertible, and the same holds for H ′. �

Corollary 3.2 also provides an alternative proof of Theorem 2.1 from Section 2.

Corollary 3.3. RS(α, δ) is a MDS code. To be specific, RS(α, δ) is a linear code with
parameters n = p− 1, k = p− δ, and d = δ that satisfy d+ k = n− 1.

3.4. Exercises for Section 3.

(1) (a) Show that 2 is a primitive root in Z13 but 3 is not.
(b) Show that 9 is a primitive root in Z11 but 4 is not.

(2) Given p = 5, α = 2, and δ = 3.
(a) Calculate a generating matrix G for RS(2, 3).
(b) Calculate a parity check matrix H for RS(2, 3). Verify that h2g

T
2 = 0.

(c) Calculate the parameters of RS(2, 3).
(3) Given p = 7, α = 4, and δ = 4.

(a) Calculate a generating matrix G for RS(4, 4).
(b) Calculate a parity check matrix H for RS(4, 4). Verify that h3g

T
4 = 0.

(c) Calculate the parameters of RS(4, 4).
(4) Suppose that in Example 3.1 we defined G′ to be the 3× 5 = (p− δ − 1)× (p− 2)

matrix G′ =

6 2 1 0 0
0 6 2 1 0
0 0 6 2 1

 and let C be the linear code generated by G′.

(a) Find a parity check matrix H ′ for C.
(b) What is the minimum distance for C.
(c) Can you generalize the results of this exercise? That is, suppose δ has been

chosen to be strictly less than p−1 and G′ is defined to be the the (p−δ−1)×
(p−2) matrix built from cyclic shifts of the coefficients of g(x). (Alternatively,
G′ is found by deleting the last row and last column of G.) Then what are the
parameters for the linear code generated by G′?

(5) Suppose that in Example 3.1 we defined g2(x) = (x−22)(x−23)(x−24)(x−25)(x−
26), and let G2 be the 4 × 6 matrix generated by the coefficients of k. Like g(x),
g2(x) has consecutive powers of α for its roots, however these powers start with the
second power, not the first.
(a) Compute the generating matrix G2.
(b) Compute a parity matrix H2 corresponding to G2.

30 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

(c) Can you generalize the results of this exercise? That is, suppose gk(x) has
αk, αk+1, · · · , αδ−1+k for its roots, and Gk is the matrix constructed from the
coefficients of gk. What are the parameters of the linear code generated by Gk?

4. Appendix

We assume that the reader is familiar with the theory of vector spaces over the field of
real numbers, as presented in a first course in Linear Algebra. We begin this appendix by
defining arithmetic modulo a prime number p in order to introduce finite fields and vector
spaces over these fields. We conclude with a result on linear transformations and a remark
on the cardinality of vector spaces over finite fields. The later theorems in the appendix
are used in the earlier sections of the module. Any standard Linear Algebra text contains
proofs of these theorems for real vector spaces. These proofs generalize to vector spaces
over finite fields without complication.

4.1. Vector Spaces Over Finite Fields.

Definition 4.1. If a and b are integers, we say that a is congruent to b modulo p,
and write a ≡ b (mod p), if a − b is divisible by p, i.e., there is some integer k such that
a = b+ kp.

Example 4.1: 33 ≡ 5 (mod 7) since 33 = 5 + 4 × 7. Likewise, 203 ≡ 58 (mod 5) since
203 = 58 + 29× 5. �

Consider the set of integers Zp = {0, 1, 2, . . . , p− 1}. Using the congruence relation, let
us define addition and multiplication for this set.

Definition 4.2. If a and b are elements of Zp, their sum is a⊕b = c, where c is the (unique)
element in Zp that is congruent to (a+ b) modulo p, and their product is a⊗ b = d, where
d is the (unique) element in Zp that is congruent to a× b modulo p.

Example 4.2: If p = 7, Z7 = {0, 1, 2, 3, 4, 5, 6}. Then 4 ⊕ 5 = 2 since 4 + 5 = 9 ≡ 2
(mod 7), and 4⊗ 5 = 6 since 4× 5 = 20 ≡ 6 (mod 7). The full addition and multiplication
tables for Z7 are as follows:

REED-SOLOMON CODES 31

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 1 2 3 4 5

.

When we wish to be very clear, we indicate the set Z7 together with its two operations
by (Z7,⊕,⊗). �

(Z7,⊕,⊗) is very rich in properties. In fact, it satisfies all the properties listed in the
following definition.

Definition 4.3. A field (F,⊕,⊗) is a set F together with two binary operations, ⊕ and
⊗ called addition and multiplication, defined on F such that the following axioms are
satisfied for all elements a, b and c in F.

F1: F is closed with respect with addition and multiplication, i.e., a ⊕ b and a ⊗ b are
elements of F.

F2: Addition and multiplication are commutative.
F3: Addition and multiplication are associative.
F4: F contains an element e, called the identity element for addition, such that a⊕e = a.
F5: For each a in F there exists an element a′ in F, called the additive inverse of a,

such that a⊕ a′ = e.
F6: F contains an element u, called the identity element for multiplication, such that

a⊗ u = a.
F7: For each a 6= e in F there exists an element a∗ in F, called the multiplicative inverse

of a, such that a⊗ a∗ = u.
F8: Multiplication is distributive with respect to addition, i.e., a⊗(b⊕c) = (a⊗b)⊕(a⊗c).

This definition looks complicated so we provide two examples. The first should be very
familiar, and the second is fundamental for this module.

Example 4.3: The set R of real numbers, with usual addition and multiplication is a
field. In this case e = 0 and u = 1. �

Example 4.4: (Z7,⊕,⊗) is a field with e = 0 and u = 1. It is evident from the tables that
axioms F1 and F2 are satisfied. Let us verify one case of each of the remaining axioms.

32 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

F3: Since 6⊕ (2⊕3) = 6⊕5 = 4, and (6⊕2)⊕3 = 1⊕3 = 4. This verifies that addition
is associative in this case.

F3: 4⊗ (5⊗2) = 4⊗3 = 5, and (4⊗5)⊗2 = 6⊗2 = 5. This verifies that multiplication
is associative in this case.

F5: Since 3⊕ 4 = 0, 4 is the additive inverse of 3.
F7: The multiplicative inverse of 2 is 4 since 2⊗ 4 = 1.
F8: Since 5 ⊗ (2 ⊕ 6) = 5 ⊗ 1 = 5, and (5 ⊗ 2) ⊕ (5 ⊗ 6) = 3 ⊕ 2 = 5, the distributive

law holds in this case.

�
For any prime number p we may construct tables of addition and multiplication as we

did for Z7 and the resulting structure is also a field.

Theorem 4.1. (Zp,⊕,⊗) is a field for any prime number p.

For a proof, see [1], page 267.

Since we will only work with fields Zp, we will henceforth indicate the elements e and u
with 0 and 1, respectively. The definition of vector space over the real numbers R can now
be generalized to that of a vector space over a field Zp. Just as the typical vector space
over the real numbers consists of n-tuples of real numbers, so the typical vector space over
the field Zp consists of n-tuples of elements in Zp. For example, a vector space of dimension
five over Z3 will contain vectors such as (1, 0, 0, 2, 1).

Definition 4.4. A vector space V over Zp is a set of elements called vectors, together
with two operations, addition and scalar multiplication. The addition of two vectors satisfies
the following axioms for all vectors x, y and z in V .

V1: V is closed with respect to addition.
V2: Addition is commutative and associative.
V3: There exists a vector 0 such that x + 0 = x.
V4: For each vector x there exists a vector x′ such that x + x′ = 0.

The scalar multiplication of an element in Zp, called a scalar, by each element in V satisfies
the following axioms, for any elements a and b in Zp and any elements x and y in V .

V5: ax is an element of V .
V6: a(bx) = (ab)x.
V7: (a+ b)x = ax + bx.
V8: a(x + y) = ax + ay.
V9: 1x = x.

The following examples of vector spaces are of importance in coding theory.

REED-SOLOMON CODES 33

Example 4.5: We will indicate with Z7[x] the set of polynomials in the variable x with
coefficients in Z7. The set of polynomials with coefficients in Z7 and degree at most 5, say,
is indicated by L5

7, so

L5
7 = {f ∈ Z7[x] : deg(f) ≤ 5}.

Addition and scalar multiplication in L5
7 are defined by adding and multiplying coefficients

modulo 7. So if f(x) = 6x2 + 4x3 + x5 and g(x) = x2 + 5x3 + 3x4 are two elements in L5
7,

then (f + g)(x) = f(x) + g(x) = (6x2 + 4x3 + x5) + (x2 + 5x3 + 3x4) = 2x3 + 3x4 + x5 and
(5f)(x) = 5f(x) = 2x2 + 6x3 + 5x5. With these operations, L5

7 is a vector space over Z7. �

Example 4.6: Let Z6
3 indicate the set of six-tuples of elements in Z3. Define addition

of six-tuples coordinate-wise, modulo 3. For example, (1, 0, 2, 2, 0, 2) + (2, 2, 0, 1, 1, 2) =
(1⊕p 2, 0⊕p 2, 2⊕p 0, 2⊕p 1, 0⊕p 1, 2⊕p 2) = (0, 2, 2, 0, 1, 1). Likewise, define scalar multipli-
cation modulo 3. For example, 2(2, 1, 1, 0, 2, 1) = (2⊗p2, 2⊗p1, 2⊗p1, 2⊗p0, 2⊗p2, 2⊗p1) =
(1, 2, 2, 0, 1, 2). With these operations, Z6

3 is a vector space over Z3. �

These examples generalize as follows.

Theorem 4.2. Let Zn
p be the set of n-tuples of elements of Zp. Define addition of n-tuples

coordinate-wise modulo p, i.e.,

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 ⊕p y1, x2 ⊕p y2, . . . , xn ⊕p yn).

For a in Zp define scalar multiplication also coordinate-wise modulo p, i.e.,

a(x1, x2, . . . , xn) = (a⊗p x1, a⊗p x2, . . . , a⊗p xn).

Then Zn
p is a vector space over Zp.

Theorem 4.3. Let Lnp be the set of polynomials of degree at most n with coefficients in Zp.
Define addition and scalar multiplication of polynomials as addition and scalar multiplica-
tion modulo p on the corresponding coefficients. Then Lnp is a vector space over Zp.

The proofs of these theorems are fairly straightforward.

4.2. Subspaces, Bases and Dimension. As in vector spaces over R, the subsets of a
general vector space that are closed under addition and scalar multiplication deserve special
attention.

Definition 4.5. A subset C of a vector space V over the field Zp is called a subspace of
V if

(i) whenever x and y are elements of C, then x + y is an element of C, and

(ii) whenever a ∈ Zp is a scalar and x is in C, then ax is an element of C.

34 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

It follows from this definition that a subspace satisfies all the axioms in the definition of
a vector space. Therefore a subspace is a vector space over the field Zp.

Example 4.7: The set C = {(0, 0, 0), (1, 1, 1)} is a subspace of Z3
2. It is easy to verify that

the two axioms are satisfied since (1, 1, 1) + (1, 1, 1) = (0, 0, 0) and the only scalars are 0
and 1. �

Just as in the case of vector spaces over R, linear combinations of vectors can be used
to construct subspaces of V .

Definition 4.6. If x1,x2, . . . ,xk are vectors in V , and a1, a2, . . . , ak are scalars, the vector
a1x1 + a2x2 + . . . + akxk is called a linear combination of the vectors x1,x2, . . . ,xk.
The span of a set B of vectors over the field F is the set of all linear combinations of the
vectors in B using coefficients from that field. That is, if B = {x1,x2, . . . ,xk} then

Span(B) = {a1x1 + a2x2 + . . .+ akxk : ai ∈ F}.

Theorem 4.4. Let B = {x1,x2, . . . ,xk} be a set of vectors in the vector space V and let
C = Span(B). Then C is a subspace of V .

If C is as in Theorem 4.4, we say that C is generated by the vectors x1,x2, . . . ,xk, or,
equivalently, by the set {x1,x2, . . . ,xk}.

Example 4.8: The set of all linear combinations of the vectors (1, 2, 3, 4, 5, 6), (1, 4, 2, 2, 4, 1)
and (1, 1, 6, 1, 6, 6) is a subspace of Z6

7. Other vectors in this subspace include

5(1, 4, 2, 2, 4, 1) + 3(1, 1, 6, 1, 6, 6) = (1, 2, 0, 6, 3, 2)

and

(1, 2, 3, 4, 5, 6) + 6(1, 2, 3, 4, 5, 6) = (0, 0, 0, 0, 0, 0).

�

The definitions of linear independence and linear dependence of a set of vectors in a
vector space over a finite field are identical to those for vector spaces over R. One must,
however, be careful to carry out the operations modulo the appropriate prime number.

Definition 4.7. A set of vectors x1,x2, . . . ,xk in a vector space V is said to be linearly
independent if whenever a1x1 + a1x2 + . . .+ akxk = 0 for scalars ai ∈ F , i = 1, 2, . . . , k,
it follows that ai = 0 for all i = 1, 2, . . . , k. If a set of vectors is not linearly independent,
we say that it is linearly dependent.

Example 4.9: In the vector space Z3
5, the set of vectors S = {(4, 3, 0), (0, 1, 1)} is linearly

independent because if a(4, 3, 0) + b(0, 1, 1) = (0, 0, 0), then (4a, 3a + b, b) = (0, 0, 0) or

REED-SOLOMON CODES 35

4a = 0, 3a+b = 0, and b = 0. Consequently a = b = 0. On the other hand, the set of vectors
T = {(2, 4, 3), (1, 2, 4)} is not linearly independent because 3(2, 4, 3) + 4(1, 2, 4) = (0, 0, 0).
Thus the set {(2, 4, 3), (1, 2, 4)} is linearly dependent. �

Given a vector subspace C, we often want to find a minimal set of vectors that generate
C. Such minimal sets turn out to be linearly independent.

Example 4.10: Let C be the subspace of Z3
5 generated by the vectors (4, 3, 0), (0, 1, 1)

and (3, 2, 1). This set of vectors is linearly dependent since 2(4, 3, 0) + (0, 1, 1) = (3, 2, 1).
So we may also describe C as the subspace generated by (4, 3, 0) and (0, 1, 1). This set is
minimal in the sense that no single vector generates C. In fact any two of the three vectors
above will form a minimal set generating C. �

The concepts of basis and dimension of a vector space of Zp can now be formulated.

Definition 4.8. Let V be a vector space. A set of vectors in V is called a basis of V if it
is linearly independent and it generates V .

Theorem 4.5. Any two bases of V have the same number of elements.

Definition 4.9. The number of elements in any basis of V is called the dimension of V .

The following examples illustrate these concepts.

Example 4.11: For L5
7 is as in Example 4.5, two bases are:

B1 = {1, x, x2, x3, x4, x5} and B2 = {x− 1, x2 − x, x3 − x2, x4 − x3, x5 − x4, 1− x5}.
Thus L5

7 has dimension six. The subspace of L5
7 generated by the set of vectors {x−1, x2−

x, x2 − 1} has dimension two and a basis is {x− 1, x2 − x}. �

Example 4.12: In Example 4.10, C is a subspace of dimension 2 of Z3
5, while the vector

space Z3
5 itself has dimension 3, since a basis is provided by the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

�

In general, searching for a basis by trial and error can be cumbersome. Given the set of
vectors S = {x1,x2, . . . ,xk} that generates a subspace C, we would like to find a linearly
independent subset of S that also generates C. This is equivalent to finding the largest
subset of S that is linearly independent. The following theorem provides a quick way to
find such a largest subset for the purposes of this module.

Theorem 4.6. Let x1,x2, . . . ,xk be vectors in Zn
p and let M be the matrix whose rows are

the entries of the given vectors. If M has a j × j sub-matrix with a non-zero determinant,
then the corresponding j rows of the matrix are linearly independent vectors.

36 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

Example 4.13: Consider the vectors (4, 3, 0), (0, 1, 1) and (3, 2, 1) in Z3
5. Then M =4 3 0

0 1 1
3 2 1

. Since det(M) ≡ 0 (mod 5), the three row vectors are linearly dependent over

Z5. On the other hand, the 2× 2 sub-matrix

(
4 3
0 1

)
has a non-zero determinant. So the

set of vectors {(4, 3, 0), (3, 2, 1)} is linearly independent. �

Definition 4.10. Given a matrix M , the size of the largest set of linearly independent row
vectors is called the rank of M .

Since determinants can be used to calculate the rank of a matrix, it will facilitate our
work to know a family of matrices with non-zero determinants.

Definition 4.11. A determinant D is a Vandermonde determinant if it is the deter-
minant of a matrix of one of the following forms

1 1 . . . 1
a1 a2 . . . an
a2

1 a2
2 . . . a2

n
...

...
...

an−1
1 an−1

2 . . . an−1
n

 or


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

...
1 an a2

n . . . an−1
n


where the ai are elements of a field.

Theorem 4.7. A Vandermonde determinant has value
∏

0<i<j≤n

(ai − aj).

Note that if ai = aj for i 6= j then D = 0, while if all the ai are distinct then D is
non-zero.

Example 4.14: In the vector space Z6
7, consider the subspace generated by the vectors

that are enumerated as rows of the following matrix.

G =


1 1 1 1 1 1
1 2 3 4 5 6
12 22 32 42 52 62

13 23 33 43 53 63


Since G has four rows, its rank is at most four. To see that it is four, consider the sub-
matrix formed by the last four columns of G. Its determinant is not zero because it is a
Vandermonde determinant with n = 4 and ai 6= aj for i, j = 1, 2, 3, 4. Consequently the
rows of G are linearly independent and they generate a four dimensional subspace of Z6

7. �

REED-SOLOMON CODES 37

4.3. A Theorem on Linear Transformations. A function from one vector space to
another allows us to compare vector spaces. We will work with functions that respect the
operations of addition and scalar multiplication in the sense that is made precise in the
following definition.

Definition 4.12. Let V and W be vector spaces over the field Zp. A function T from V
to W is said to be a linear transformation if
i) T (x + y) = T (x) + T (y) for any x and y in V , and
ii) T (ax) = aT (x) for any x in V and any a in Zp.

An important example for coding theory deals with a transformation from a vector space
of polynomials to a vector space of n-tuples.

Example 4.15: Let V = L3
7 = {f ∈ Z7[x] : deg(f) ≤ 3} and let W = Z6

7. Each f in V
is of the form f(x) = a0 + a1x + a2x

2 + a3x
3, where the ai are in Z7. Define the function

T by T : L3
7 → Z6

7 where T (f) =
(
f(1), f(2), f(3), f(4), f(5), f(6)

)
. Then T is a linear

transformation since

T (f + g) =
(
(f + g)(1), (f + g)(2), (f + g)(3), (f + g)(4), (f + g)(5), (f + g)(6)

)
=
(
f(1) + g(1), f(2) + g(2), f(3) + g(3), f(4) + g(4), f(5) + g(5), f(6) + g(6)

)
= T (f) + T (g),

and

T (af) =
(
(af)(1), (af)(2), (af)(3), (af)(4), (af)(5), (af)(6)

)
=
(
a(f(1)), a(f(2)), a(f(3)), a(f(4)), a(f(5)), a(f(6))

)
= a
(
f(1), f(2), f(3), f(4), f(5), f(6)

)
= aT (f).

�

One method of defining a Reed–Solomon code makes use of a relation between linear
transformations and subspaces that we present in the next theorem.

Theorem 4.8. Let V and W be vector spaces over the field Zp and T : V → W be a linear
transformation. Then T (V) = {w ∈ W : w = T (v) for some v ∈ V } is a subspace of W .

Example 4.16: With V , W and T as in Example 4.15, the set T (V) is

T (V) = {wW : w = T (v) for some v ∈ V }
=
{
x ∈ Z6

7 : x =
(
f(1), f(2), f(3), f(4), f(5), f(6)

)
for some f ∈ L3

7

}
.

T (V) is a subspace of Z6
7 in view of Theorem 4.8. �

38 S. LEONHARDI, L. LUQUET, AND J. SAUERBERG

4.4. A Remark on Cardinality. The cardinality of a set is the number of elements in
the set. To count the number of elements in vector spaces and subspaces over a finite field,
we use the following principle.

Theorem 4.9. Fundamental Principle of Counting (Multiplication Rule). Sup-
pose we have to make a sequence of k choices, where the i-th choice can be made in ni
different ways, for i = 1, 2, . . . , k. Then the number of possible sequences of choices is the
product n1n2 · · ·nk.

To choose a vector in Zn
p we need to make n choices where each choice can be made in

p different ways. Thus Zn
p has exactly pn elements. Let C be a subspace of Zn

p and let
x1,x2, . . . ,xk be a basis of C. The vectors in C are exactly those of the form a1x1 +a2x2 +
. . . + akxk, where the ai are in Zp. A standard result is the theory of vector spaces states
that the representation of a vector in terms of a given basis is unique. Thus to choose a
vector in C we must make k choices where each choice can be made in p different ways.
This means C has pk vectors.

Example 4.17: Let C be a 7 dimensional subspace of Z10
11. C has 117 = 19, 487, 171

vectors and the cardinality of Z10
11 is 1110 ≈ 2.5937× 1010. �

References

[1] Fraleigh, John B., A First Course in Linear Algebra, Addison Wesley Longman, 2002.
[2] Gallian, Joseph A., Contemporary Abstract Algebra, 5th Ed., Houghton Mifflin, Boston, MA, 2005.
[3] Pless, Vera, Introduction to the theory of Error-Correcting Codes, 3rd Ed., John Wiley, New York,

NY, 1998.
[4] Pretzel, Oliver, Error-Correcting Codes and Finite Fields, Oxford University Press, Student Edition,

Oxford, United Kingdom, 1996.
[5] Riley, Martyn and Richardson, Iain, An introduction to Reed–Solomon codes: principles, archi-

tecture, and implementation, 4i2i Communications Ltd., http:www.4i2i.comreed solomon codes.htm,
copyrighted 1998, accessed 6/18/03.

[6] Roman, Steven, Introduction to Coding and Information Theory, Springer-Verlag, Renselaer, NY,
1997.

[7] Van Lint, J. H., Introduction to Coding Theory, Springer-Verlag, New York, NY, 1982.
[8] Walker, Judy L., Codes and Curves, Student Mathematical Library, American Mathematical Society,

Providence, RI, 2000.

	abstract08-2
	driver_v2

