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Introduction 
 
The purpose of this writing is to use actual biological data (population models) as a way to 
appreciate the importance of eigenvalues and eigenvectors. This module can be used in a Linear 
Algebra class or any other appropriate level math course. We will develop examples and 
questions for each topic which will show how eigenvalues and eigenvectors can be used to 
address questions regarding the long-term behavior of the population under study. It is assumed 
here that either the student will learn or already has the necessary prerequisite knowledge of the 
concepts needed to do these questions. A project is also added which one can use as a group 
project. 
 
We envision that this module can be used in the following courses with some changes.  
 

 Linear Algebra: This can serve as an application of the concepts of eigenvalues and 
eigenvectors.  It is assumed that the concepts of linearly independent, basis, and matrix 
algebra are already covered. One can use the problems included as homework 
assignments or use the included project as group work. Students will need at least a week 
to do the group project.  

 
 Dynamical Systems/Math Modeling/Math Topics Course: This module can be used as 

one of the topics covered in these types of courses. In this case, either the students will 
have necessary knowledge of the terminology used or the instructor will spend some time 
covering the basic knowledge needed. The time spent on basics and module will depend 
on the class level and student knowledge. For example, if students have already taken a 
Linear Algebra course, then one can just start with the module unless there is a need to 
refresh some of the terminology. Again, problems included can be used as homework 
assignments or group projects.  

 
 A Topic for Student Seminars: Ideally this module can also be used in a Student 

Seminar course. This module can serve as a starting point (or reference) for the Leslie 
matrices topic and students can be asked to expand on it; for example, find some 
populations and data which follow Leslie type models and check the long-term behavior 
of populations, population distribution, growth rate, effects of culling, etc. 

 
Our hope is that in the end this application will give students a greater appreciation for the 
mathematical ideas they are learning and also show them how sophisticated mathematical ideas 
are applied in other disciplines. 
 
 

Leslie Matrices 
 
Many species have a life-cycle with well-defined stages. For example, many insects go through 
the following four-stage cycle: egg, larvae, pupae and adult. A Leslie matrix uses age-specific or 
stage (class)-specific survival and fecundity rates for a population to describe the way the 
population structure varies over time. 
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To begin, let’s suppose that the female members of a population are divided into two stages, each 
one year in length. Females in the first stage produce no offspring and have a 70% chance of 
surviving to the second stage. Females in the second stage produce an average of 3 female 
offspring per year, but are guaranteed to die after one year in stage 2. Let’s also suppose that 
initially there are 100 females in the first stage and 100 females in the second stage. What will 
the distribution of the female population look like in year 1? 
 
The number of stage 1 females in year 1 = (average number of offspring produced by stage 1 
females x 100) + (average number of offspring produced by stage 2 females x 100) = (0 x 100) + 
(3 x 100) = 300.  
 
Also, the number of stage 2 females in year 1 = number of stage 1 females reaching stage 2 + 
number of stage 2 females remaining in stage 2 = (probability of a stage 1 female reaching stage 
2 x 100) + (probability of a stage 2 female remaining in stage 2 x 100) = (0.7 x 100) + (0 x 100) 
= 3. So, in year 1, there will be 300 females in stage 1 and 70 females in stage 2.  
 
We can repeat this process to find the distribution of the female population in year 2. In other 
words, the number of stage 1 females in year 2 = (average number of offspring produced by 
stage 1 females x 300) + (average number of offspring produced by stage 2 females x 70) = (0 x 
300) + (3 x 70) = 210. Also, the number of stage 2 females in year 2 = number of stage 1 females 
reaching stage 2 + number of stage 2 females remaining in stage 2 = (probability of a stage 1 
female reaching stage 2 x 300) + (probability of a stage 2 female remaining in stage 2 x 70) = (.7 
x 300) + (0 x 70) = 210. So, in year 2, there will be 210 females in stage 1 and 210 females in 
stage 2.  
 
Can you find the distribution of the female population in year 3? You should get 630 females in 
stage 1 and 147 in stage 2. 
 
What do we do if there are more than two stages for the female population? In general, suppose 
the female members of a population are divided into n stages or classes. Let = the fecundity of 
a female in the ith class, i.e., = the average number of offspring per female in the ith class. Also 
let = the probability that a female in the ith class will survive to become a member of the (i+1)st 

class. Let  
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Then a Leslie matrix that describes the change in the population over time is given by 
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and we can represent the system of linear equations given in (1) by the matrix system 
 
      .)()1( kk Lxx =+

 
Also note that  
 
    (2)  .)0(1)1( xx ++ = kk L
 
Of course not every species will follow this model so we will discuss some variations to this 
model later. 
 
Let’s look at a simple example. In 1941, H. Bernadelli explored a beetle population that consists 
of three age-classes. One-half of the females survive from year 1 to year 2, one-third of the 
females survive from year 2 to year 3. The females reproduce in their third year, producing an 
average of six new females. After they reproduce, the females die.  
 
Let’s construct the Leslie matrix for this beetle population. Following the construction of the 
Leslie matrix described on the previous page, we see that our Leslie matrix L is given by: 
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That seems easy enough. Now let’s see how we can use matrix L and some linear algebra to 
describe how this population will change over time. 
 
Question 1: 
We’re interested in the long-term behavior of the population. So let’s see if we can answer the 
following questions. 
 

a) Suppose that in a given year there are 60 beetles age 1 year, 60 beetles age 2 years and 60 
beetles age 3 years. In other words, the population of beetles at time 0 is given by the 

vector .What will the age distribution of the beetles look like in the following 

year? How about 5 years from now? How about 10 years from now? 
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The question we are most interested in answering is the following: What will happen to a 
population in the long run? Will it grow? Will it die out? Will it get younger? Older? The key to 
answering these questions is the eigenvalues and eigenvectors of L.  
 
To see this, let’s go back to our initial example, where the female members of a population are 
divided into two stages, each one year in length. Females in the first stage produce no offspring 
and have a 70% chance of surviving to the second stage. Females in the second stage produce an 
average of 3 female offspring per year, but are guaranteed to die after one year in stage 2.  Let’s 
also suppose that initially there are 100 females in the first stage and 100 females in the second 
stage. 
 

The Leslie matrix L for this population is given by  We find the eigenvalues of L to 

be 
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45.11.21 ≈=λ and .45.11.22 −≈−=λ  The corresponding eigenvectors are 
and  How will this help us determine the long-run population?  1 (2.07,  1)=e 2 ( 2.07,  1).= −e

 
First, we will express our initial population vector as a linear combination of the 
eigenvectors This gives:  Then  
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as we saw above.  
 
From (2) above we see that  
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and now we can see that as n gets larger, both stages of our population will continue to grow due 
to ⋅n)45.1(  
 
Now let’s return to our beetle population example. Recall that the Leslie matrix for our beetle 
population is given by 
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Question 2: 
What will happen to the population of beetles in the long run? Will it die out? Will it grow? Will 
the population get younger? Older? Let’s see if we can determine what will happen. 
 

a) Beginning with , calculate , , )2()1( xx  and .)3(x  What will happen if I calculate 

, , )5()4( x  and )6(x ?  Can you now describe the long-term behavior of the beetle 
population? 
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b) Find the eigenvalues 1 2 3, ,λ λ λ for the matrix L. Also find the norm of each eigenvalue. 
What do you see? Does this help explain the behavior you observed in the previous 
problem? 

 
 

Modified Leslie Matrix: 
 
 

Lefkovitch Matrix Models (Stage-Structured Models) 

We will present here yet another application of matrices in modeling life-cycles of biological 
systems. Unlike Leslie matrix models, which are based on age-specific survival and fecundity 
rates, Lefkovitch matrix models are based on stage-specific survival rates. For example, it is very 
difficult to get an accurate count of individuals who are classified as “extremely old.” 
Classifying individuals by stage rather than age has been used, for example, in plant ecology 
where size was more often a better predictor of demographic fate than age ([2]). Lefkovitch 
models are more useful for several reasons:  

• It's often difficult or impossible to classify animals and plants accurately with respect to 
their age. For instance, in the fish population scientists determine the age of fish by 
counting growth rings. These growth rings are found on vertebrae, ear bones and some 
types of scales. One pair of such rings represents one year of growth. However, before 
scientists can accurately age the animal, they must verify when the rings are deposited. 

• In some organisms, especially perennial plants, survivorship and fecundity are more 
related to size than to age.  

• In some organisms, especially herbaceous perennial plants, individuals may actually 
revisit stages they already left, e.g., they may get smaller from one season to the next.  

• Focusing on life-cycle stages helps to focus attention on identifying the critical transitions 
that may provide opportunities for management.   

 Applications: Both animal and plant population life-cycles can be modeled using stage 
structured models. Examples include: trees, sea turtles, desert tortoise, geese, corals, copepods 
and fish.  

There are two methods of constructing Lefkovitch models: life-cycle graphs and matrices that 
are associated with the life-cycle graphs. For completeness we present both methods.  

The Life-Cycle Graph: One of the easiest ways to understand Lefkovitch Models is by 
constructing a life-cycle graph. A life-cycle graph is a graphical description of a life-cycle of a 
biological species. To construct a life-cycle graph one can proceed as follows: 

• Select a set of stages that are used to describe the life-cycle. 
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• Choose a projection interval. Depending on the species and stages, the projection 
interval can be in years, months, weeks or even days. Denote time intervals by ).1,( +t  t

• Assign a node for each stage. Denote the nodes by iN where i denotes the thi −  stage.  
• Put an arc from jN  to iN  if an individual in stage j  at time t  can contribute individuals 

(by development or reproduction) to stage i at time 1+t . If an individual in stage j  at 
time t  can contribute to stage j  at time 1+t  (by remaining in the same stage from one 
time to the next), put an arc from jN  to itself. Such an arc is called a self-loop.    

• Label each arc by a coefficient jia , . The coefficient jia ,  on the arc from jN  to iN  gives 
the number of individuals in stage i at time 1+t  per individual in stage j at time t  . The 
coefficients jia ,  may be transition probabilities or reproductive outputs. Thus, 

)( , where )(tn j is the population in stage∑
=

s

jia
1

,=+
j

ji tntn )1( j at time t .            

Example: A life-cycle graph for the killer whale Orcinus orca (Source: [2]). Consider the 
killer whale Orcinus orca with four stages: yearlings, juveniles (past their first year but not 
mature), mature females, and postreproductive females. Let the projection interval be one year. 
Denote by  the probability of surviving and staying in stage i , by  the probability of 
surviving and growing from stage  to stage 

iP iG
i 1+i , and by  the fertility of stage . The nodes 

represent stages:  = yearlings,  = juveniles, = mature females and  = 
postreproductive females. Below is the life cycle graph under these assumptions. 

iF i

1N 2N 3N 4N

 

In the above life-cycle graph it is worth mentioning that individuals cannot remain in stage one 
from one time to the next. This is because the projection interval (one year) and the time period 
for the juveniles are the same. Hence, it is assumed that 01 =P  and no self-loop has been used 
for node .  Another important fact is that there is a postreproductive stage which does not 
contribute to any other stage. Positive fertility for juvenile females is also assumed since some 
juveniles may mature during the time interval t  to 

1N

1+t and produce prior to time  .1+t

  2N  1N   3N   4N

3F  

2F  

1G  3G  2G  

3P  4P  2P
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Model Construction: Life-cycle graphs easily show the interaction and/or transition among the 
stages. From the life-cycle graph we can construct a matrix model that will be used to analyze 
the long-term behavior of the biological species. Matrix models are used to answer questions 
related to stability of the system using concepts such as eigenvalue and eigenvectors from linear 
algebra. We believe that the use of matrix models constructed from biological data will give 
strong motivation for students to learn abstract concepts in linear algebra. In addition, it shows 
concrete application of linear algebra concepts in areas such as biology.    

 
The basic matrix equation for the number of individuals from one stage to another can be 

calculated by , where  stands for the number of individuals at stage t and A 
is the coefficient matrix which can be constructed from the probabilities of transition among the 

various stages.  It is important to mention that  is a vector whose components are the 
different stages that individuals of the biological species undergo in their life-cycle. The structure 
of the Lefkovitch matrix is similar to that of the Leslie matrix. However, since Lefkovitch 
matrices are based on stages rather than age, it is possible to have non-zero transition 
probabilities in the main diagonals. For example for a four-stage model the Lefkovitch matrix 
has the form 

)1()( −=
→→

tnAtn )(tn
→

)(tn
→
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Stable Stage Distribution: Once again we have that  where is the initial 

population size and t is time. Further one can show that in stable stage. Here λ 
denotes the largest eigenvalue of A. The largest eigenvalue λ gives the asymptotic rate of 

population increase. Further it can be shown that for stable stage  , where  is the 
eigenvector corresponding to the largest eigenvalue. When the population has reached its 
asymptotic growth rate, the stage-structure of the population is proportional to . The 
eigenvector corresponding to the largest eigenvalue gives the stable-stage structure. In other 
words, the components of the eigenvector corresponding to the dominant eigenvalue will give 
the proportions of the species in each stage in the long run.  
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Question 3:  
The following example is about the life cycle of the killer whales Orcinus orca (Source: [6]).  
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Answer the following questions for the projection matrix of the Orcinus orca: use of a computer 
algebra system such as Maple is recommended.   
 

a) Find all eigenvalues of B. Which eigenvalue is the dominant eigenvalue?  
 
b) Find an eigenvector corresponding to the dominant eigenvalue. 

 
c) Using the initial vector 0x = [15, 50, 80, 60], estimate the distribution of the stages of the 

whale population after 20 years.  
 

d) What can you say about the stable-stage distribution of the whale population in the long 
run? Compare your answer with problem (c) and comment on your findings! 

 
Project A: 

The Honu or Hawaiian Green Sea Turtle has life stages of varying lengths.  A matrix model 
for the Honu population must allow for some turtles to survive and remain in their present stage 
while others will survive and move into the next stage.  In this project you will use basic 
principles of probability to develop a Lefkovitch (stage-structured) matrix model for the Honu 
population and use it to investigate the long-term behavior of the Honu population. 

 
Data set: 

The five life-stages of the Hawaiian Green Sea Turtle are:  eggs (hatchlings), juveniles, sub-
adults, novice breeders, and mature breeders.  The ages, annual survivorship, and number of eggs 
laid per year for each stage are provided in the following table: 

 
Stage Description    Ages Annual Survivorship Eggs Laid for Each Stage

Eggs (hatchlings) <1 0.23 0 
Juveniles 1-16 0.68 0 
Sub-Adults 17-24 0.75 0 
Novice Breeders 25 0.89 280 
Mature Breeders 26-50 0.92 70 

 
For our five-stage model, the Lefkovitch matrix has the form 
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where ei represents the number of eggs laid per year by turtles in the ith stage,  represents the 
proportion remaining in stage i and  represents the proportion that will survive and move into 
stage ( ). 

ip

iq
1+i

The following six questions will assist you in constructing a Lefkovitch matrix for the Honu 
population.  Let si denote the annual survivor rate for the ith stage and di denote the duration (in 
years) of the ith stage. For example, for the “sub-adults” stage: 8 ,75.0 ,3 33 === dsi . 
 

1. Determine the probability that a sea turtle beginning the “juvenile” stage (i.e., age 1) 
survives to age 3.  Determine the probability that it survives to age 7.  What is the 
probability that the one-year old sea turtle will survive to age 17 and move into the “sub-
adults” stage? 

 
2. Suppose 100 sea turtles enter the “juvenile” stage. Find the number of these sea turtles 

that will survive this stage and move on to “sub-adults” stage.  Now, suppose 100 sea 
turtles enter stage i.  Find an expression for the numbers of these sea turtles that will 
survive stage i and move into stage i + 1. 

 
3. Suppose that 100 turtles enter the “juvenile” stage from the “egg” stage each year. 

Explain why )15100  represents the total number of turtles in the entire 
“juvenile” stage. What will be the expression for the total number of turtles in the entire 
stage i if 100 sea turtles enter stage i from stage (i -1) each year? 

( 21 i i is s s+ + + ⋅⋅⋅+

 
4. Use the previous two answers to find an expression for qi, the proportion of turtles that 

will survive stage “i” and move into stage ( 1+i ). 
 

5. Recall pi represents the proportion of turtles remaining in stage i.  Use the fact that 
ii  to show: i sqp =+
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Hint:  You may want to use the following equation to rewrite qi: 

( )121 −+⋅⋅⋅+++ id
iii sss ( ) id

ii ss −=− 11  
 

6. Determine the values of pi, qi and ei for i = 1…5 and use these values to construct the 
Lefkovitch matrix A for the five-stage model for the Honu population. 
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In the following seven problems we will investigate the long-term behavior of the Honu 
population using the Lefkovitch matrix and techniques from linear algebra involving eigenvalues 
and eigenvectors. 
 

7. Given that the population at each stage in 2006 is: 
 

.
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Find the estimated sea turtle population by stages in 2010 and 2020.  What is your long-
term prediction for the Honu populations? 
 

8. Use a computer or calculator to compute the eigenvalues λ1…λ5 and the corresponding 
eigenvectors 51...ww KK  for the matrix A. 

 
9. Write the population vector in 2006 as a linear combination of the eigenvectors, i.e., 

55110 ... wawaP KK ++=  
for some constants a1…a5. 
 

10. Use the previous problem and your knowledge about eigenvalues and eigenvectors to 
write an expression for AnP0. 

 
11. What is the long-term outlook for the Honu population?  Does this agree with your 

response in problem 7? 
 
12. Select the eigenvector, call it uK , corresponding to the eigenvalue with largest magnitude.  

Compute 

,1 u
k

u KK =∞  

where k is the sum of the components of uK .  The vector ∞uK approximates the long-term 
proportions of the populations in each stage. 
 

13. Using the population sizes for each stage in the year 2020 computed in problem 7, find 
the proportion of the total 2020 population in each stage and compare it to the 
corresponding component of ∞uK .  Are they close? 

 
Question 4: Life history for the Pacific ocean Chinook salmon (Source:[4]) 
In the fall adult female salmon return to their stream to produce fertilized eggs, a process we 
describe as spawning. After they produce the fertilized eggs, the female salmon die. The 
fertilized eggs then hatch into small fish and live in the stream for several months. After 
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surviving in the stream for several months, they will swim back to the ocean. The percentage of 
eggs still alive the next fall and present in the ocean is 4%. These are called “Age 1 fish”. Of the 
Age 1 fish, 20% will go back spawning and produce 2000 eggs. The remaining 80% will stay in 
the ocean. Of those remaining in the ocean, 50% will survive until the next fall season. Label 
these “Age 2 fish”. Of the Age 2 fish 25% will go back spawning and produce 4000 eggs, while 
the remaining 75% remain in the ocean. Finally, 40% of these Age 2 fish in the ocean will 
survive until the next fall. These are labeled “Age 3 fish”. All of the Age 3 fish will then go back 
spawning and produce 6000 eggs per individual. Introduce three nodes, , where = 
for stage Eggs, = for stage Age 1 fish in the ocean after spawning, and  = for stage Age 2 
fish in the ocean after spawning. Note that there are no Age 3 fish left in the ocean after 
spawning.   

210 ,, NNN

2N
0N

1N

 
a) Draw a life-cycle graph for these three nodes.  
 
b) Find the Lefkovitch matrix corresponding to this life cycle graph.  

 
c) Find the stable stage distribution of the salmon population. 
 

Question 5: Life history for female grey seals (Source: [4]). 
On average adult female seals, age five and older, give birth to 0.52 female seals during October. 
The newly born female seals live to age 1 with probability 0.72. The annual survival rate for all 
subsequent years is 0.95.  
  

a) Construct the Lefkovitch matrix for a population of female seals: Age 1 females, Age 2 
females, Age 3 females, Age 4 females and Age 5 and above females. 

 
b) Determine the growth rate of the female seal population and the corresponding 

proportions by age.      
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2. Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation, 2nd 
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4. Newman, Ken Modeling Ecological Dynamics (http://www.creem.st-and.ac.uk/ken) 
5. Demographics of the Hawaiian Green Sea Turtle: Modeling Population Dynamics using 

a Linear Deterministic Matrix Model – The Leslie Matrix, University of Hawaii website, 
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 15

http://darwin.eeb.uconn.edu/
http://www.creem.st-and.ac.uk/ken
http://isolatium.uhh.hawaii.edu/linear/ch6/green.htm
http://www.cpb.ucdavis.edu/bioinv


 
 

Solutions to the Problems  
 

 
Question 1: 
 

a) The age distribution of the beetles in year one is given by  
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 The age distribution of the beetles five years from now is given by 
 

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
10
180
120

60
60
60

0
3
10

00
2
1

600

5

)0(5xL  

 
 The age distribution of the beetles ten years from now is given by 
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Question 2: 
 

a) 
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We see the population cycling through  and  So  and 

. The population will cycle through these three vectors forever. 
,, )2()1( xx .)3(x ,, )2()5()1()4( xxxx ==

)3()6( xx =

b) The eigenvalues of L are 
2

31and,
2

31,1 321
ii −−

=
+−

== λλλ  (the cube roots of 1). 

Each eigenvalue has norm 1.  Since the 3rd power of each eigenvalue is 1, we observe the 
cyclic nature of the population. 

 
Question 3: 
 

a) The eigenvalues of B: (rounded to four significant digits). All four eigenvalues iλ are 
distinct and real: =1λ 0.0048, =2λ 0.8342, =3λ 1.0254 and =4λ 0.9804. The dominant 
eigenvalue is =4λ 1.0254. 
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b) The eigenvector corresponding to the dominant eigenvalue is  or any scalar 

multiple of this vector. 

⎟⎟
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⎜
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=
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w

c) The population size in each stage is given by  
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d) The stable stage distribution is given by . This is done by normalizing the 

dominant eigenvector so that its components add up to 1. Note that the percentage of the 
population size in each stage from c) is a good approximation of the stable stage 
distribution. 
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Question 4: 
 

a) Life cycle graph for adult female salmon: 
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0.5*0.25*4000 
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b) The Lefkovitch matrix is:    
⎟
⎟
⎟

⎠
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⎜
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⎝

⎛

0375.00
00032.0

240050016

c) The dominant eigenvalue is 3221620617.03826931 =λ  with a corresponding eigenvector 

or any scalar multiple of this vector. The stable stage distribution is given 

by   
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Question 5: 
 

a) The Lefkovitch matrix is  with a dominant 

eigenvalue 1.1217
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1 =λ . The corresponding eigenvector is 
1775.0
2096.0

 or any scalar 

multiple of this vector. 
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b) The stable stage distribution is given by . 
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Project A: 
 

1. 166 . 2 )68(. ,)68(. ,)68(.
 

2. 16) , ( ) id
is⋅100 . 68.0(100 ⋅

 
3. )68.0(  is the number of sea turtles that survived and reached age 2.  2)68.0(100 ⋅  is 

the number that survived and reached age 3. So 
100 ⋅

( )68.068.01(100 2 +++⋅ ))68.0( 16+"  is 
the total number of turtles in “Juvenile” stage for the duration of this stage and 

ids −  for any stage i. ( )12
i i i+ ⋅⋅⋅+100 1 s s+ +

4. ( ) ( )
1 1ids −+

. Note that iq does not depend on the 

numbers that enter the stage each year if it remains the same for that stage. 
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6.  
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A
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7.  

              4 14
2010 0 2020 0

1332271 596701
734236 552238

   and  29162 3226
1567 144
11301 7287

P A P P A P

⎛ ⎞ ⎛
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             You may suspect that the Honu population will eventually die out. 
 
 

8.  
   

 

1
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3 1 2 3
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w w
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             Note that any scalar multiples of 51 ww K…K will also be eigenvectors. 
 

9.   wK  11 11 11 11 9
0 1 2 3 44.0444 10 3.9355 10 3.2919 10 1.1150 10 6.2481 10P w w w w= × + × − × − × + ×K K K K

5

3
n

 
10.  

              
11 11 11

0 1 2
11 9

4 5

4.0444 10 ( 0.0584) 3.9355 10 (0.0686) 3.2919 10 (0.6694)

             1.1150 10 (0.6969) 6.2481 10 (0.9225)

n n n

n n

A P w w w

w w

= × − + × − ×

− × + ×

K K K
K K  

 
11. The Honu population will eventually become extinct since each of the eigenvalues has a 

magnitude less than 1.  This agrees with our prediction in problem 7. 
 
 
 

12.  
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13. The proportion of the total 2020 population in each stage is: 
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             This is fairly close to . ∞uK

 22


