
Some Problems are NP-Harder than Others

1. Introduction

In this module we will investigate some ideas related to computational complexity using two classic
graph theory problems: the Vertex Cover problem and the Dominating Set problem. For-
mally, a graph is a pair of sets, G = (V,E), where V is a finite set of vertices (sometimes called
nodes) and E is a set of unordered pairs of vertices called edges. If e = (u, v) ∈ E, then we say that u
and v are adjacent vertices (or neighbors), and that e is incident to both u and v; u and v are called
the endvertices of e. The size (or order) of a graph is the number of vertices in the graph, n = |V |.
For example, suppose V = {u, v, w, x, y, z} and E = {(u, v), (u, w), (v, x), (v, w), (v, y), (v, z)}. Then
the graph G = (V,E) has size n = 6 and can be represented with a diagram as follows.

FIXME graph 1

Graphs can be used to construct models that help us analyze and solve real world problems. For
example, vertices can represent locations within a city, with edges between vertices corresponding
to locations connected by a road. We could then use the graph to help us find the most efficient
way to visit all of the locations. As another example, vertices could represent students in a class,
with an edge between two vertices indicating that the corresponding students are willing to work
on a project together. As a final example, vertices could represent course offered at a university
during a particular term, with an edge between two vertices indicating that there is at least one
student taking both of the corresponding courses. We could use the graph to schedule final exams
so that students have no conflicts.

2. The Problems

A vertex cover of a graph G = (V,E) is a set of vertices C ⊆ V such that for each edge e = (u, v) ∈
E, either u ∈ C or v ∈ C. The Vertex Cover problem is to find the size (number of vertices) of
a smallest vertex cover. A related problem is the k-Vertex Cover problem, which asks whether
there exists a vertex cover of size k (where k is a positive integer). Note that if G has a vertex
cover of size strictly less than k, then the answer to this question is ”yes”. (Why?)

A dominating set in G = (V,E) is a set of vertices D ⊆ V such that every vertex v ∈ V is either
itself an element of D or is adjacent to an element of D. The Dominating Set problem is to
find the size of a smallest dominating set; the k-Dominating Set problem asks whether there is
a dominating set of size (less than or equal to) k.

Exercise 1: Let G be the graph given in the figure below.

FIXME graph here

(1) For each set S, determine if S is a vertex cover for G. Are any of the sets a minimum vertex
cover? Give reasons for your answers.
(a) S = {a, b, c, e, g, f}
(b) S = {a, c, g, f, k}
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2 (c) S = {b, c, d, e, f, g, k}
(2) For each set S, determine if S is a dominating set for G. Are any of the sets a minimum

dominating set? Give reasons for your answer.
(a) S = {c, d, e, k}
(b) S = {a, c, f}
(c) S = {a, b, e, h, k}

Exercise 2: The degree of a vertex v is the number of edges incident to v in the graph. Suppose
a graph G has a vertex v of degree 0; such a vertex is called isolated.

(1) Will v be in a minimum vertex cover of G? Why or why not?
(2) Will v be in a minimum dominating set for G? Why or why not?

Exercise 3: Suppose G is a graph with no vertices of degree 0.

(1) Prove that any vertex cover of G must also be a dominating set for G.
(2) Give a counterexample to show that the converse of the statement in part (a) is false.

Exercise 4: A subset of vertices in a graph is called independent if no two vertices in the subset
are adjacent. Let C be a vertex cover in the graph G = (V,E). Show that I = V \C (i.e. the
complement of C in V ) is an independent set. Conclude that the problems of finding a maximum
independent set and a minimum vertex cover are equivalent.

Exercise 5: The complement of a graph G = (V,E) is the graph Ḡ = (V, Ē), where Ē consists
precisely of all edges not in G. A subset of vertices is called a clique if any two vertices in the
subset are adjacent. Show that a vertex subset J in G is independent if and only if J is a clique
in Ḡ. Conclude that the problems of finding a a maximum independent set and a maximum clique
are equivalent.

3. Applications of the problems

Suppose the edges of a graph represent display hallways in an art gallery, and the vertices represent
intersections of those hallways. We want to position security guards at the intersections in such a
way that each gallery hallway is covered, using the fewest total number of guards possible.

Suppose a group is trying to form a committee that will be representative of and responsive to the
group’s needs and ideas. Each member of the group is represented by a vertex. Each person in the
group designates individuals whom he or she feels would represent his or her ideas on the committee.
An edge between two vertices indicates that the two people designated each other (we assume that
such designations are always reciprocated). The group would like to forma representative committee
of minimum size.

Suppose the vertices of a graph represent locations in a nuclear power plant. An edge between
vertices indicates that a guard at either location can see a warning light at the other location (we
assume that a guard can see a warning light at his or her own location). We want to find the
minimum number of guards needed to oversee all locations in the plant.



3Exercise 4

(1) Explain why the ”art gallery guard” problem is an application of the Vertex Cover
problem.

(2) Explain why the ”representative committee” problem is an application of the Dominating
Set problem.

(3) Explain which problem models the ”nuclear power plant guard” problem.

4. Integer programming (IP) Formulations

To solve either Vertex Cover or Dominating Set, several approaches can be used. Since the
solution to either problem involves finding a subset of the vertex set V , it would be theoretically
possible to list all possible subsets, determine which subsets represent vertex covers (or dominating
sets), and from those, choose a subset of minimum order. In practice this is rarely feasible.

Exercise 5: Recall that a set of n elements has 2n possible subset. Given a set of vertices V , how
many subsets of V are there if

a. |V | = 20 b. |V | = 50 c.|V | = 100

Exercise 6: In the previous exercise, suppose that a computer takes 10−6 seconds (i.e. a millionth
of a second) to compute each subset. How long would it take to compute all subsets in parts (a)
through (c)?

Another approach is to formulate these problems as integer programming problems. Let us begin
with the vertex cover problem. Suppose a graph G = (V,E) has n vertices, numbered 1, 2, 3, . . . , n.
The decision variables are, for i = 1, ..., n xi = 0 if vertex i is not in the cover and xi = 1 if vertex
i is in the cover. We want to solve the following problem.

minimize
n∑

i=1

xi

subject to

xi + xj ≥ 1 for every (i, j) ∈ E

xi = 0 or 1 for i = 1, 2, . . . , n

The dominating set problem can be similarly formulated as an integer programming problem.
Again, the decision variables are xi, for i = 1, . . . , n; xi = 0 if vertex i is not in the dominating set
and xi = 1 if vertex i is in the dominating set. For this problem, we want to:

minimize
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n∑
i=1

xi

subject to:

xi +
∑

(i,j)∈E

xj ≥ 1 for each i = 1, . . . , n

xi = 0 or 1 for i = 1, 2, . . . , n

Exercise 7: Consider the given IP formulations of the two problems.

(1) Explain why the two IP formulations have the same objective function.
(2) For each model, explain why the constraints are appropriate.

Exercise 8 A matching in a graph G = (V,E) is a set of edges M ⊆ E such that no two edges in
M have a common end vertex. The Maximum Matching problem is to find the maximum size of
matching. Give an IP formulation of this problem. (Hint. Use one decision variable for each edge
in G.)

5. Linear Programming and Integer Programming

The example below will allow us to explore some of the ideas behind the relationship between a linear
programming problem (LP) and the integer programming problem (IP) with the same objective
function and constraints. If our variables must be integers, can we solve the IP by rounding the
LP solution? By rounding to the nearest feasible solution? Whats different about the IP problem?

We will look at a small, very simplified, linear programming problem involving a diet. Interestingly,
a diet problem, with many more variables and constraints than the one below, was one of the first
problems used to test the simplex algorithm. This algorithm was devised by George Danzig in the
1940s and is still the most widely used algorithm for solving linear programming problems. Here
is our problem, put together using information from www.mcdonalds.com.

Suppose you are going to eat only two foods: six-piece orders of McDonalds chicken nuggets (Mc-
Nuggets) and small orders of McDonalds french fries. You want to maximize the protein you eat
while keeping calories and sodium intake within reasonable limits. Each six-piece order of nuggets
contains 15 grams of protein, 250 calories and 800 mg of sodium. Each small order of french fries
contains 3 grams of protein, 220 calories and 150 mg of sodium. You want to have no more than
1500 calories and no more than 2500 mg of sodium per day from these foods.

Let m represent the number of six-piece orders of McNuggets and f , the number of small orders of
french fries.

maximize:
p = 15m + 3f



5subject to:

250m + 220f ≤ 1500 (calorie constraint)
800m + 150f ≤ 2500 (sodium constraint)

with:
m > 0, n > 0

Well first look at the feasible solution space on the graph that follows: its the region below and to
the left of both lines.

The optimal solution to the LP problem occurs at one of the corner points of the feasible solution
space: (0, 0), (3.125, 0), (2.3466, 4.1516) or (0, 6.8182). We can compute p at each of these points,
or we can look at the slope of the objective equation for a fixed value of p to determine at which of
these points the optimal solution occurs. Either method will show that the optimal solution occurs
at the intersection of the two constraint lines, where m = 2.3466 and f = 4.1516. The optimal
value is p = 15 ∗ 2.3466 + 3 ∗ 4.1516 = 47.6538 grams of protein.

Exercise 9: Why might these solutions involving non-integer values of m and f be undesirable?

Now suppose we want to limit our solution to integer values of m and f . Is choosing the closest
integers to the optimal LP solution, namely (m, f) = (2, 4) going to be the optimal integer solution?
Maybe, maybe not!

One way to be sure is to evaluate the objective function at all of the feasible integer solutions:
(0, 0), (0, 1), ...(0, 6); (1, 0), (1, 1), ...(1, 5); (2, 0), (2, 1), ...(2, 4); (3, 0). We can no longer just look at
the boundary of the feasible solution space. In fact, the boundary doesn’t contain any integer
solutions! It turns out that the optimal integer solution occurs at (3, 0). At this solution, the
amount of protein p = 45 grams.

Exercise 10: What is the solution to the LP problem if we keep all requirements the same, except
we change the limit on the amount of sodium to no more than 2300 mg per day?

Exercise 11: What is the solution to the IP problem if we keep all requirements the same, except
we change the limit on the amount of sodium to no more than 2300 mg per day?

Exercise 12: What implications do these computations have for deducing the solution of an LP
problem with integer restrictions on the decision variables (i.e. an IP problem) from the solution
of the LP problem with no such restrictions?

6. Branch and Bound

As we have seen, one way to solve an integer programming (IP) problem is to ignore the fact that
the decision variables are integers, and simply solve the problem as if it is a linear programming
(LP) program using standard techniques such as the simplex method. This related problem is
called the LP-relaxation. In some instances, we may be very fortunate in that the solution to the
LP relaxation will have integer values for all of the variables. In this case, we have also solved the



6IP. If not, the solution to the LP-relaxation provides us with a lower bound on the value of our
objective function in the IP. This solution can be used as a starting point for solving IP problems.
One method that we will only mention briefly is to add new constraints, called cutting planes, that
systematically eliminate non-integral solutions until a solution to the IP is found.

A different approach that we will describe in this section is called the branch and bound method. If
we solve the LP-relaxation of an IP and do not obtain an integral answer, the first step is to choose
a variable whose value in the current optimal solution is non-integral; this is called the branching
variable. We can form two new LP relaxation problems in which the branching variable is set equal
to 0 and 1 respectively. If the solutions to these problems are not integral, then we choose another
branching variable and repeat the process.

To understand this idea more clearly, let us consider a specific problem. Consider the graph
G = (V,E) with V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 5)}. (Note
that G can be constructed by forming a complete graph on 4 vertices and then adding the edge
(1, 5)). We wish to find a vertex cover of minimum size by solving the following IP.

minimize
5∑

i=1

xi

subject to:

x1 + x2 ≥ 1
x1 + x3 ≥ 1
x1 + x4 ≥ 1
x2 + x3 ≥ 1
x2 + x4 ≥ 1
x3 + x4 ≥ 1
x1 + x5 ≥ 1

xi = 0 or 1 for i = 1, 2, 3, 4, 5

We form a linear programming problem by relaxing the integrality constraint on the decision
variables to 0 ≤ xi ≤ 1. We will refer to this problem as LP1. If we solve LP1, we obtain an
optimal value of z = 2.5, with optimal solution x = (0.5, 0.5, 0.5, 0.5, 0.5). Since we did not obtain
an integral solution, we have not solved the IP. However, we know that the minimum value of z
cannot be any less than 2.5. This is the bounding part of the method.

Since none of the variables had integer value in the optimal solution to LP1, we could choose any
one of them to be a branching variable. Let us choose x1 as our first branching variable. We form
a new linear programming problem, LP2, by adding the constraint x1 = 0 to LP1. Similarly, we
form a third problem, LP3, by adding the constraint x1 = 1 to LP1. An optimal solution to LP2 is
x = (0, 1, 1, 1, 1) which gives z = 4. This is a feasible solution to our IP, but we do not yet know if
it is optimal. Solving LP3 produces an optimal solution x = (1, 0.5, 0.5, 0.5, 0) which gives z = 2.5.

Since the solution to LP3 is not integral, we must choose another branching variable. Suppose we
pick x2. Branching from LP3, we form two new problems. In problem LP4 we have x2 = 0 and



7in LP5 we have x2 = 1. An optimal solution to LP4 is x = (1, 0, 1, 1, 0) which gives z = 3. An
optimal solution to LP5 is x = (1, 1, 0.5, 0.5, 0) which also gives z = 3.

The solution to LP4 is integral which provides us with another feasible solution to the IP, and in
fact, provides us with a new lower bound on the solution, since we obtained z = 3 as opposed to
z = 4 in LP2. Although the solution to LP5 is not integral, further branching is not necessary.
Note that the value of z in LP5 is also equal to 3, which does not improve upon our lower bound.
If we add new constraints to LP5 by requiring other variables to have integer values, the value of z
will either remain the same or increase, but can never decrease. Therefore, we have used bounding
to limit our search for optimal solutions to the IP. Although we have checked only 2 of the 25
feasible solutions to the IP, we can state with confidence that we have found an optimal solution.

The following diagram summarizes our solution to this example problem:

Note that depending on the method that is used for solving linear programs, other optimal solutions
may be found. For instance, x = (1, 0.5, 0.5, 0.5, 0) is another optimal solution to LP1, and x =
(1, 1, 1, 0, 0) is another optimal solution to LP5.

Exercise 13: Let G be a complete graph with 5 vertices. Find a minimum vertex cover by
formulating an IP and using the branch and bound method. Draw a diagram that illustrates the
branches formed during your solution.

Exercise 14: Let G = (V,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and E = {(1, 2), (2, 3), (3, 4), (1, 4), (5, 6), (6, 7), (7, 8), (8, 5), (3, 5)}.
Draw a diagram of this graph and try to find a minimum vertex cover by inspection. Formulate
the problem as an IP and solve it using branch and bound.

Exercise 15: Let G be the graph given in the previous question. Try to find a minimum dominating
set by inspection. Formulate the problem as an IP and solve it using branch and bound.

7. Computational Complexity

Although Vertex Cover and Dominating Set are easy to state, they quickly become very
difficult to solve as the size of the graph grows, even by the fastest computers. Formulating them
as IP’s does not help matters much; there are no fast algorithms for integer programming. These
two problems share this property with a number of other classic problems in discrete mathematics.
What is curious is that for some of these problems, there are clever tricks that enable us to solve
them efficiently, whereas others have defied all attempts to find similar shortcuts. There appears
to be a natural division in the world of combinatorial problems between those that are easy and
those that are hard. In this section, we make this idea more precise.

The study of these issues is called computational complexity. A general problem, such as Vertex
Cover, is formally a collection of instances of the problem, in this case one for each particular
graph G = (V,E). An algorithm for solving the problem must be general enough to handle all
possible instances as input. The complexity of an algorithm is a rough measure of the maximum
number of elementary computations required to obtain a solution, as a function of the size of the
input; this is used to give an indication of the worst-case running time of the algorithm (one that
is independent of the increasing speed of computers). When the input is a graph G = (V,E), for
example, the size is usually taken to be n = |V |. It is often difficult to specify the complexity



8function f(n) very precisely, but certainly we expect it to be an increasing function (i.e. the bigger
the size of the input, the longer the algorithm will take). Of paramount importance is how quickly
the complexity grows as n increases. In particular, is the growth no worse than polynomial in
nature, or is it exponential? It is common to describe the complexity of an algorithm solely on the
basis of its ’order of magnitude’ in terms of growth, using what is called big-O notation. This is
formally defined below.

Definition 1. Let N represent the natural numbers ( i.e. the positive integers) and R+ the positive
real numbers, and let f and g be functions N → R+. Then f(n) is O(g(n)) if f(n) is eventually
dominated by some positive multiple of g(n); that is, there exist m ∈ N and C ∈ R+ such that
f(n) < Cg(n) for all n ≥ m.

For simplicity, we can restrict our attention to the class of decision problems, those for which the
answer is either ’yes’ or ’no’. Some examples are:

• Prime: Is a given positive integer composite (as opposed to prime)?
• Satisfiability: Given a compound logical expression, is there a set of truth values for the

constituent propositions that make the entire compound expression true?
• 2-Colorability: Can all the vertices of a graph be colored with red and blue so that no

edge joins two vertices of the same color?

Any optimization problem can be solved indirectly by solving a number of decision problems. For
example, we could determine the minimum size of a vertex cover of a graph G by repeatedly asking
if there exists a vertex cover of size k, for a series of intelligent choices of positive integer k. If we
use binary search, then because the minimum vertex cover has size at most n = |V |, we need to
solve such a decision problem at most blog2 nc times. This is such a slow-growing function of n that
the complexity of the optimization problem is essentially that of the associated decision problem.
This tactic can in fact be applied to any integer programming (IP) problem.

A decision problem is said to belong to the class NP if a ’yes’ answer can be quickly verified by
means of a certificate. The letters NP stand for nondeterministic polynomial-time algorithm; the
’polynomial-time’ refers only to how long it takes to check the certificate. For example, we could
certify that, yes, n is composite by providing two integers s and t that satisfy n = st; this mul-
tiplication can be verified very quickly by a computer. We could certify that, yes, the compound
expression p is satisfiable by providing a list of appropriate truth values for the constituent propo-
sitions; this can be quickly verified using binary multiplications and additions. We could certify
that, yes, G has a vertex cover of size k by listing the vertices of one such cover; we then simply
have to check that each edge has one endvertex in this set.

Checking a certificate is quite different from coming up with a certificate. A brute force approach
to the k-Vertex Cover problem would involve investigating whether each k-subset of vertices is a
cover; for a graph with n vertices, there are

(
n
k

)
such subsets and in a worst-case scenario we would

have to test each one of them. A crucial point is that this number gets very large very quickly as
n and k grow; while it may be possible to handle relatively small instances with this method, large
instances become intractable even for the fastest computers of today and of the foreseeable future.

Exercise 16 For the values of n and k listed in the table below, compute how long a computer would
take to perform

(
n
k

)
elementary computations, assuming it can perform a billion such computations

per second. Express your last three answers in terms of years.
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n k
50 10
100 10
100 50
200 50
200 100

For some problems, there are much faster - in particular, polynomial-time - alternatives to the brute
force approach. For example, a polynomial-time algorithms exists for determining whether a graph
is 2-colorable. In 2002, a polynomial-time algorithm was finally discovered for determining whether
a number is composite or prime. This subclass of problems within the class NP is labeled P ; more
informally, such problems are called tractable. Another example of a problem in P is Maximum
Matching, encountered in Exercise 6. A famous open problem in mathematics asks whether in
fact P = NP . That is, will we eventually find quick algorithms for solving every problem in NP?

NP

NP-hard

NP-complete

P
(tractable)

NP-complete

NP-hard

NP-completeNP-complete

One step towards answering this question is the identification of a set of problems that have the
amazing property that if any one of them can be solved in polynomial time, then so can every
problem in NP . Such problems are called NP -hard. A problem that is both NP -hard and is itself
in NP is called NP -complete; see the Venn diagram below. In fact, these terms are often used
interchangeably. The first problem shown to be NP -complete was Satisfiability (in 1971). Over
the years, many bright minds spent a lot of time and effort trying to find efficient algorithms for
various NP -hard problems with no success, and as a result the consensus among experts is that P
is probably a proper subset of NP .

There are by now many optimization problems that have been shown to be NP -hard, among
them Vertex Cover and Dominating Set. Formulating these problems as IP’s does not help,
because in general, integer programming is also NP -hard. However, we cannot simply give up on
large instances of these and other NP -hard problems. They crop up in the real world in many
different fields, such as telecommunications and computational biology, where it is important to
get some kind of answer. This has led to the development of techniques like branch and bound.
It is important to now that while branch and bound is often successful at solving large-scale IP’s
in a reasonable amount of time, it comes with no guarantees. It is quite possible to bogged down
investigating an exponentially increasing number of branches. Interestingly, however, general linear
programming (LP) is in P !

A recent approach to NP -hard problems has focussed on determining what component of the
input size is responsible for the computational intractability. For example, the first improvement
in an algorithm for k-Vertex Cover had running time O(2kn); currently the best algorithm has



10complexity O(1.271k + kn). Note that in both cases only k contributes to the exponential growth
in the running time. This leads to the following definition.

Definition 2. (1) A parameterized problem is one for which the size of an instance is an
ordered pair (k, n); k is referred to as the parameter and n as the main input size.

(2) A parameterized problem is fixed-parameter tractable (or FPT ) if there exists an algorithm
that solves the problem with complexity f(k)p(n), where p is a polynomial in n (and f is an
unrestricted function of k).

(Note that the latest algorithm for k-Vertex Cover satisfies this definition, because for all positive
integers n, 1.271k + kn ≤ (1.271k + k)n, and complexity is concerned only with putting an upper
limit on the running time.) By contrast, there are no known algorithms for the k-Dominating
Set problem that do any better than simply determining whether each possible k-subset of the
vertices is a dominating set, and this has complexity O(nk+1). In this case, we cannot isolate the
parameter k in one multiplicative factor. The following exercise demonstrates what a difference
this makes to running time.

Exercise 17 For the values of n and k listed in the table in Exercise 16, compute the ratio nk+1

2kn
.

One might hope that for k-Dominating Set, it is not k that is causing the computational com-
plexity, but some other parameter. Maybe if we just reconfigure the input, with some other part
of the input size playing the role of the parameter, we can get an algorithm of the required form.
In fact, parameters need not even be numbers; they can reflect not just one but several structural
properties of the input. However, it has been shown that it is highly unlikely that Dominating
Set is FPT - as unlikely, in some sense, as P = NP .

Even though the table in the exercise shows that 2kn is clearly more manageable than nk+1, it is
still possible for this number to get too large to be computable in a reasonable amount of time.
However, a purely empirical observation is that for most parameterized problems encountered in
the real world, the value of the parameter k is comparatively small (for example, under 100). This
keeps the value of 2kn manageable, while nk+1 remains unwieldy.

In fact, the advantage of having a small value of k gets compounded. A crucial feature of FPT
problems is that they are particularly amenable to clever pre-processing techniques that (quickly)
reduce each instance to a smaller instance of the same problem. If the reduction is drastic enough,
it is still practical to apply even exponential-time algorithms to solve the smaller instance. The
following makes this more precise.

Definition 3. A parameterized problem P is kernelizable if there are rules for transforming any
instance I of size (k, n) in polynomial time to another instance I ′ of size (k′, n′) satisfying k′ ≤ k
and n′ ≤ h(k′), where h is an (unrestricted) function of k′.

The reduced instance I ′ is the ’kernel’ of the original instance; implied in this definition is that a
solution to the kernel I ′ can be ’lifted’ to a solution of I. Note that the main input size n′ of I ′ is
bounded by a function of the parameter k′, which is itself bounded by k; the main input size of the
original instance has completely disappeared! This demonstrates that the time required to solve
an instance of the problem ultimately depends only on the size of the parameter.

The result below shows that this reduction strategy works for all FPT problems.



11Theorem 1. A parameterized problem is kernelizable if and only if it is FPT .

Hence, in applications where it can be assumed that the parameter is reasonably small, this class
of NP -hard problems is for all practical purposes tractable.

8. Preprocessing for the Vertex Cover Problem

We now present some preprocessing rules that allow us to kernelize an instance of the k- Vertex
Cover problem on a graph G of size n. These rules are applied iteratively to obtain smaller and
smaller instances of the problem, until we obtain one so small that it can reasonably be solved even
with an exponential time algorithm.

Each rule allows us to assume that certain vertices of the current graph either must be, or must not
be, in the vertex cover we seek. We record those that must be included, then create a new, reduced
graph. Not only will this graph be smaller in terms of number of vertices, the size of the cover we
are checking for (k) will also usually be smaller. For notational purposes, we will use G = (V,E),
n and k to denote the ’current’ graph, its size and parameter. We let S denote the set of vertices
of G that must be contained in a minimum vertex cover of G (before we apply any rules, S = ∅).
We use G′, n′ and k′ to denote the graph, size and parameter obtained after a preprocessing rule
has been applied.

Recall that we are tackling the k-Vertex Cover problem only as a means of answering the original
Vertex Cover problem. Thus, although we are officially checking for vertex covers of size k, we
are in fact interested in finding vertex covers of minimum size.

• Rule 1. If G has a vertex v of degree 0, it cannot be in a vertex cover of minimum size.
Since v does not “cover” any edges, we don’t gain anything by including v in a vertex cover
(as you should have discovered in Exercise 2). Thus we eliminate all isolated vertices from
the graph to obtain G′; in addition, n′ = n− (the number of deleted vertices), and k′ = k.
The set S is unchanged. In the example that follows, n = 6 and n′ = 4.

FIXME graph 3
• Rule 2. If G has a vertex v of degree 1, then we can assume that any minimum vertex

cover does not contain v, but does contain the one vertex u which is adjacent to v. To see
this, note that any vertex cover must contain either u or v. Since v has degree 1, including
v in a vertex cover will only cover one edge. Including u in a vertex cover will cover that
edge and may cover other edges as well. Thus including u in the vertex cover will do no
worse than including v and might do significantly better, as far as covering other edges is
concerned. Thus, we add u to S, then delete both u and v and any edges incident to them
to get the reduced graph G′. By Rule 1, we can also delete any other neighbor of U whose
degree drops to 0. Next we set n′ = n − (the number of deleted vertices), and k′ = k − 1
(because we’ve included the vertex in the vertex cover). In the graph G below, we apply
the rule once to obtain the graph G′. The vertex cover, so far, includes u1. After the first
application of Rule 2, we have n′ = n − 2 = 5. We can apply the rule again to get the
reduced graph with three vertices. Now the vertex cover, so far, includes u1 and u2.

FIXME graph 4
• Rule 3. Suppose G has a vertex v of degree 2 and its two neighbors, u and w, are adjacent.

Then any vertex cover must contain at least two of these three vertices in order to cover the



12 three edges (u, v), (u, w) and (v, w). Note that v only covers two of these edges (since v has
degree 2), while u and w may cover other edges as well. Thus we may assume that the two
adjacent neighbors u and w are in any minimum vertex cover, and v is not. Hence, we add u
and w to S, then delete all three vertices v, u, and w and their incident edges. We also delete
each neighbor whose degree drops to 0. We set n′ = n − (number of deleted vertices) =
n − 3, and k′ = k − (number of vertices added to S) = k − 2. In the graph G below, we
delete vertices u, v, and w and all incident edges to obtain the reduced graph G′. Then
n′ = n− 3 = 3 and the vertex cover, so far, includes u and w.

FIXME graph 5
• Rule 4. Suppose G has a vertex v of degree 2 and its neighbors u and w are not adjacent.

In this case, the reduced graph G′ is obtained by replacing the three vertices u, v, and w
with one “supervertex” v′; the neighbors of v′ in G′ are exactly the neighbors of u and w in
G. Note that n′ = n− 2. Determining what changes need to be made to S and k requires
more subtle investigation. Suppose C ′ is a minimum vertex cover of G′. There are two
cases to consider.

– Case 1: If v′ /∈ C ′, then the edges incident to the ‘supervertex are covered by other
vertices in C ′. Then the set C = C ′∪{v} forms a minimum vertex cover of the original
graph G; adding v ensures that the edges (u, v) and (w, v) (which are in G but not G′)
are covered. In this case, we add v to S and set k′ = k − 1.
In graph G below, a minimum vertex cover of the reduced graph (shown as graph H)
with supervertex v′ includes p, r, and either q or s (but not v′). Thus, Case 1 applies
and only v (of the vertices u, v, and w) is in the corresponding vertex cover of the
original graph.
FIXME graph 7

– Case 2: If v′ ∈ C ′, then v′ must be needed to cover some of the edges incident to v′. In
this case, we can create a minimum vertex cover for the original graph by replacing the
supervertex v′ in C ′ with the two vertices u and w; that is, we let C = (C\{v′})∪{u, w}.
In this case, we are adding both u and w to S, but we still have k′ = k − 1.
An example follows. If we replace vertices u, v, and w in graph G below by a superver-
tex v′ and then apply Rule 2, we see that v′ would be in a vertex cover of the modified
graph, so Case 2 applies. This means that vertices u and w would be included in the
vertex cover of G.
FIXME graph 8

• Rule 5: If G has a vertex of degree greater than k, then that vertex must be included
in any vertex cover of size less than or equal to k. To see why this rule is true, suppose
G has a vertex u of degree m > k and let C be a vertex cover. If u /∈ C, then each of
its m neighbors must be in C, to ensure that all edges incident to u are covered. But
then |C| ≥ m > k. Hence we add to S all vertices of degree greater than k. To obtain
the reduced graph G′, we remove these vertices and all edges incident to them. We set
n′ = n− (number of deleted vertices) and k′ = k − (number of deleted vertices).

Exercise 18 Prove that if a graph G has more than k vertices of degree greater than k (i.e. more
than k vertices are removed when Rule 5 is applied), then the answer to the kVertex Cover
problem on G is ”no”.

As mentioned earlier, we continue iteratively invoking these rules until none are applicable. Let
G′ be the final reduced graph, of size n′ with parameter k′; this is the kernelized version of the
original instance of the problem. The next step is to find a minimum vertex cover C ′ of G′ and
to check whether |C ′| ≤ k′. It should be clear from the description of the rules that the answer



13to k′-Vertex Cover on G′ is ”yes” if and only if k-Vertex Cover on G is ”yes”. In this case,
we can in fact reconstruct a minimum vertex cover for the original graph G. If Rule 4 was never
invoked in the preprocessing phase, then simply set C = C ′ ∪ S. If Rule 4 was invoked, then
we must ’lift’ C carefully, keeping track of whether any supervertices are included in any of the
intermediate vertex covers. Hence, a ”yes’ answer to thek′-Vertex Cover on G′ allows us to
also solve the optimization problem Vertex Cover on G. Note, however, that if the answer to
k′-Vertex Cover on G′ is ”no”, then we have not yet solved Vertex Cover on G. We must
begin again with a larger value of the parameter k.

A major concern with this strategy is how long it will take to find a minimum vertex cover on the
kernelized graph G′ using an exponential time algorithm. We could be wasting a lot of time if it
turns out that the answer to k′-Vertex Cover on G′ is ”no”. Fortunately, there is a quick way
of checking whether this is any hope that the answer will be ”yes”.

Theorem 2. If G′ has a vertex cover of size k′, then n′ ≤ k′2

3 + k′.

Proof. Let C ′ be a vertex cover in G′ of size k′. Since no preprocessing rules apply to G′, the
degree of every vertex u must satisfy 3 ≤ deg(u) ≤ k′. Let F denote the set of edges that have
one endvertex inside C ′ and the other endvertex outside C ′. Note that no two vertices outside C ′

can be adjacent to each other, by definition of a vertex cover. Since each of the n′ − k′ vertices
outside C ′ has degree at least 3, we can say 3(n′ − k′) ≤ |F |. On the other hand, since each of the
k′ vertices in C ′ has degree at most k′, we can say |F | ≤ (k′)2. Combining these two inequalities
gives 3(n′ − k′) ≤ (k”)2; the rest of the proof is elementary algebra.

�

We must be careful when applying this theorem. If n′ > k′2

3 + k′), then we can skip the search, and
start anew with a larger initial parameter k. If n′ ≤ k′2

3 +k′), it is worth our while to search for the
minimum vertex cover in G′, but we may still find that it has size greater than k′, and therefore
have to start again.

Exercise 19: Let G be the graph shown below. Apply preprocessing rules 1 through 4. (Note that
you don’t need to specify a value of k to carry out these rules.) Have you identified a minimum
vertex cover of G?

FIXME graph 9

Exercise 20: Let G be the graph shown below.

(1) Using k = 6, apply the preprocessing rules in the order give: Rule 1, then 2, etc. Have you
identified a vertex cover of size k or less? What is the next step?

(2) Using k = 6, apply preprocessing rule 5 first, then apply the other rules in order: rule 1,
then 2, etc. Have you identified a vertex cover of size k or less? What is the next step?

FIXME graph here

Exercise 21: Here are two approximation algorithms (that is, algorithms that give us good, but
not necessarily optimal solutions) for the Vertex Cover problem.



14 • Algorithm A: Add to the vertex cover a vertex of maximum remaining degree; delete this
vertex and all edges incident to it. Repeat these two steps until all edges have been deleted.

• Algorithm B: Choose an arbitrary edge and include both endvertices in the vertex cover.
Delete these vertices and all edges incident to them. Repeat these two steps until all edges
have been deleted.

(1) Use each of these algorithms on the graph of Exercise 1 at the beginning of this module.
What were your results?

(2) Create a variety of different types of graphs and test these algorithms on them. Which
algorithm seems to perform better, in general?

Exercise 22: Specify preprocessing rules for the k-Dominating Set problem that are applicable
in the following cases.

(1) G has a vertex of degree 0
(2) G has a vertex of degree 1

9. Solving the Vertex Cover Problem

Let us review our overall strategy. We want to solve Vertex Cover on a graph G. We start
by guessing a value of k and then seek to answer the k-Vertex Cover problem on G. The
preprocessing rules allow us to reduce this problem to a smaller graph G′ with a smaller parameter
k′. We then attack this smaller problem by finding for a minimum vertex cover C ′ on G′. If it is
of size less than or equal to the reduced parameter k′, then we are done. Not only can we answer
both decision problems with ”yes”, we can also ’lift’ C” to a minimum vertex cover C on G. If not,
then we have to start again with a new, larger value of k.

It would therefore seem strategic to start with a very large value of k. However, the larger the value
of k, the smaller the set of vertices we remove when we apply Rule 5. This means the size of the
kernelized graph G′ is larger, which in turn means that the exponential-time search for a minimum
vertex cover in G′ will take longer. In fact, for each additional vertex, the amount of time doubles.
Hence we do not want to start with too large a value for k.

What we need is at this point is a heuristic to pick good values of k. Obviously k must be non-
negative, and it is bounded above by n, the total number of vertices in the graph. With a little
work we can produce better bounds on k.

As discussed in section 4, Vertex Cover can be formulated as an integer programming (IP)
problem. Although in general IP problems are intractable, we can solve the the LP relaxation
using efficient LP algorithms.

Exercise 23: (a) Explain why the optimal value z∗ of the LP relaxation of Vertex Cover
provides a lower bound on k∗. (b) Explain why this bound can be sharpened to dz∗e (the smallest
integer greater than or equal to z∗).

The LP relaxation can also be used to provide an upper bound. Let x∗ denote the optimal solution
to the LP relaxation, and recall that there is one decision variable per node. Let C consist of all



15nodes i for which xi
∗ ≥ 1/2. Note that this corresponds to using conventional rounding on the

components of x∗ to create an integral vector c; this technique does not always result in a feasible
solution to the original IP, but in this case it does.

Exercise 24: Prove that C is a vertex cover. (Hint. For each e = (i, j) ∈ E, you must show that
either i ∈ C or j ∈ C.)

Since k∗ is the minimum size of a vertex cover, clearly, k∗ ≤ |C|. An interesting side note is that
vertex cover C is guaranteed to be at most twice the size of an optimal cover. This follows from the
fact that the rounding process at most doubles the ’cost’ of the optimal solution. More precisely,
ci ≤ 2xi

∗ and so

|C| =
n∑

i=1

ci ≤ 2
n∑

i=1

xi
∗ = 2z∗ ≤ 2k∗.

Hence, |C|/2 is another lower bound on k∗, but from the equation above, obviously not as good a
one as dz∗e.

We now know that we should choose a value of k between dz∗e and |C|. The remaining step is to
decide how to search within this range. We present three possibilities:

(1) Pick the upper bound as the first candidate. This will guarantee the optimal solution is
found with a single “iteration.” However, as mentioned above, the kernelized graph G′ is
potentially larger than necessary and this may result in an unreasonably long brute force
search.

(2) Pick the lower bound as the first candidate, and use successively larger jumps until we find
a valid k. One potential pattern is to use inverse powers of 2 as our jump distances.

(3) Pick the average of the upper and lower bound as the first candidate. If this value is too
small, successively increase by half the distance to the upper bound. This approach is
similar to a binary search except that we never “branching” down, because guessing too
large produces the solution.

Exercise 25: There is another efficient method for generating a vertex cover C for G = (V,E)
which is at most twice the optimal size. (This method, like the one based on IP presented above,
is called a 2-approximation algorithm to Vertex Cover.) In this technique, we randomly select
an edge e ∈ E and add both of its endvertices to C. Next, we remove from G all edges incident to
these vertices. We then repeat the process on the resulting graph and continue until there are no
remaining edges.

(1) Explain why that the final set C will be a vertex cover.
(2) Give an example of a graph where the size of C is:

(a) exactly twice optimal.
(b) the same size as the optimal.

10. Programming Assignments

The material in this module can be broken down into a number of programming assignments. In the
following sections, we present four suggested activities. In each case, a sample solution is provided.



1610.1. Write a Graph Class. The most common method of representing a graph in memory is
by using an adjacency list. For each vertex, we maintain a list of the other vertices to which it is
adjacent. Typically, this is stored as an array of linked lists.

adj.pdf

For example, in the graph above, vertex 3 is adjacent to 1, 2, and 5. These three values are all
contained in the third list of the array. Notice that the edge (1, 3), it is represented in both 1’s list
and 3’s list. This is important when we delete edges and vertices.

To implement some of the algorithms we have been discussing in relation to Vertex Cover, we
need to focus on how to work with the adjacency list of a graph to:

• add a vertex to the graph;
• add an edge to the graph;
• remove an edge from the graph;
• remove a vertex (and all edges incident to that vertex);
• determine the degree of a vertex.

If you have studied the STL or understand the concept of iterators, you are strongly encouraged
to include iterators over both vertices and edges.

10.2. Brute Force Vertex Cover. Recall that our basic strategy is to use the five kernelization
rules to produce a much smaller graph G′, on which we can reasonably use a brute force approach
to find an optimal vertex cover. An algorithm to accomplish this can be broken down into three
sections - generating subsets, testing to see if they are vertex covers, and finding the smallest size
of a subset that is a vertex cover. The last two parts are fairly straightforward. To test, you
simply iterate over the edges of the graph and make sure that at least one endvertex of each edge
is in the subset. Once a first vertex cover is found, record its size in an integer variable. After
each subsequent vertex cover is found, compare its size to the recorded variable and change it as
necessary.

Generating subsets represents a more significant challenge. The most obvious approach is to exploit
the same one-to-one mapping between binary strings of length n and the n vertices that we used
in the IP formulation of Vertex Cover. Specifically, if we number the vertices 1, 2, . . . , n, then
we can use the ith bit of the string as a Boolean denoting whether or not vertex i is in the set. By
treating the string as a single unsigned integer, we can represent all possible subsets by counting
from 0 to 2n−1.

[*****QUESTIONS: Are more details going to be added here? Is the assignment to actually
produce the algorithms - the code? Or pseudocode?************]

10.3. Graph Kernelization. To implement the five kernelization rules, we take an iterative ap-
proach. At each stage, we must keep a a running record of the set of vertices S that we can assume
are in an optimal cover, the reduced graph G′, the size n′ of G′ and the integer k′. The most
straightforward approach is to first sort the vertices of the current graph in order of increasing
degree. Consider the first vertex in this list. If it has degree 0, then apply Rule 1, update G′,



17n′ and k′ accordingly and start again. If it has degree 1, then apply Rule 2, update G′, n′ and
k′ accordingly and start again. If it has degree 2, first determine which of Rule 3 or Rule 4 is
appropriate, then apply it, update the variables and start again. If the minimum vertex degree is
3 or greater, then go to the opposite end of the list and consider the vertex of maximum degree. If
it has degree greater than the current value of k′, then apply Rule 5.

[*********QUESTION: Is this right? Or does it make sense to first delete ALL vertices of suitably
large degree in one fell swoop, as opposed to one at a time? And does it make sense to do the rules
in order, as I’ve outlined above, or should Rule 5 be applied first? Did you actually implement
this, Ben? I have no empirical experience with this, but you might.*******]

Repeat this process until no rules apply during a complete iteration over the vertices to guarantee
you have finished. At this point, we apply the brute force approach developed above to the ultimate
kernel G′. The final step is to ’lift’ the solution to the original graph G by combining the optimal
cover S′ of G′ with the set S. It is important in this step to have kept track of the ”supervertices”
generated by Rule 4; they need to be ’unconsolidated’ to recover the nodes in G.

10.4. Vertex Cover: 2-Approximation. In section 1, we discussed how the LP relaxation of
the IP formulation can be used to produce a vertex cover that is at worst twice as large as optimal.
Similar to the brute force discussion above, write a program to translate the instance of a graph to
the format required by an LP solver. Execute the solver, and then round the solution to obtain a
vertex cover. Alternatively, implement the approximation scheme mentioned in section 2.

10.5. Brute Force Dominating Set. Implement an algorithm that solves the Dominating Set
problem using a brute force approach.

11. Application to Phylogenetic Trees

An important application of Vertex Cover lies in the study of evolutionary relationships among
species. By comparing the presence or absence of certain heritable traits or characters among vari-
ous species, biologists attempt to deduce which ones have common ancestors and thereby construct
what is known as a phylogenetic tree. A problem is that often real-world data present conflicting
evidence; one solution is to pare down the data as little as necessary to obtain a consistent picture.
In this section, we examine this application in more detail.

We begin with a set S of m species and a set C of n characters. We assume that (a) the common
ancestor of all species in S exhibits none of the characters, and (b) once a trait emerges, it is
inherited by all subsequent species in the phylogenetic tree (i.e. once a character changes from ’0’ to
’1’, it cannot change back again). This means that all species exibiting a certain character will have
a common ancestor. We encode observed data in an associated m×n binary matrix M = M(S, C)
by setting mij = 1 if species si exhibits character cj ; otherwise mij = 0. Intuitively, we say that M
is a perfect phylogeny if we can construct an evolutionary tree based on the information in M that
adheres to our biological assumptions. We can put this in more precise, graph theoretical terms.
Formally, a tree is a connected graph with no cycles. A rooted tree has one vertex designated as the
root, usually drawn at the top. Terms such as parent, ancestor, child, descendant have the obvious
meanings. A rooted tree is binary if it has at most two children per vertex. A leaf is a vertex with
no children.



18Definition 4. A binary rooted tree T = (V,E) is a perfect phylogenetic tree of M(S, C) if

(1) there is a one-to-one correspondence between the species S and the leaves of T ;
(2) each character c ∈ C labels exactly one edge in T (but there may be unlabeled edges in T );
(3) for each species, the unique path from the root to the corresponding leaf contains an edge

corresponding to each character exhibited by the species.

The figure below gives a perfect phylogenetic tree for M0 =


1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 1
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Figure 1. A perfect phylogenetic tree for M0.

Exercise 26: If M(S, C) has a perfect phylogenetic tree, is it unique? Provide either a proof or a
counterexample to support your answer.

Not all binary matrices admit perfect phylogenetic trees. Consider the following matrix.

Mc =

 1 1
0 1
1 0


Any tree representing Mc must have the property that the unique path from the root to leaf s1

contains both edges c1 and c2. If c1 occurs before c2 on this path (that is, c1 emerged before c2 in
the evolutionary time scale), then any species exhibiting c2 must also exhibit c1; this is contradicted
by species s2. Similarly, species s3 contradicts the possibility that c2 occurs after c1.

This examples represents in simplest form what can go wrong with the data. For any character
cj , let Sj denote the set of species exhibiting cj . A Venn diagram illustrating the situation in the
preceding example is given in Figure 1; note that neither S1 nor S2 is contained in the other, nor
are they disjoint. For perfect phlyogeny, we need to avoid this situation.

Definition 5. A family of subsets A of a given universal set U is laminar if for all A,B ∈ A,
either A ∩B = ∅ or A ⊆ B or B ⊆ A.
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* *
*

S S
1 2

S

Figure 2. A small non-laminar family.

Exercise 27: Let A be a maximal member of a laminar family A; that is, A is not contained in
any other member of A. Let AA = {B ∈ A | B ⊆ A}. Prove that AA and its complement in A are
laminar families.

Theorem 3. M = M(S, C) is a perfect phylogeny if and only if {Sj | cj ∈ C} is a laminar family.

Proof. If {Sj | cj ∈ C} is not laminar, then we run into the contradiction mentioned above. Con-
versely, assume this family is laminar; we will give an iterative process for constructing a corre-
sponding phylogenetic tree. Begin with a root vertex. Identify a maximal set Si in the family; add
two edges to the root, one labeled ci. The vertex at the end of this edge, vi, represents the common
ancestor of all species exhibiting character ci. If Si is also a minimal set in the family, then we
branch down from vi in a binary manner, with a leaf for each species in Si as shown in Figure 2.
(If Si consists of a single species, then we need simply relabel vi with this species.)

.
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.

.

.
i1

si2

sit-1
sit

vi

ci

....

.s

.
..

.

.

i1

si2

sit-1
sit

....
Si

Figure 3. Binary subtree representing Si.

If Si is not minimal, then by the exercise, {Sj | Sj ⊂ Si} is a laminar family and we can repeat the
process above with vi as the root of the subtree corresponding to all species exhibiting character
ci. Additionally, {Sj | Sj ∩ Si = ∅} is a laminar family and we can repeat the process above with
wi as the root of the subtree corresponding to species not exhibiting character ci. We leave it to
the reader to show that ultimately we will have a perfect phylogenetic tree of M . �

Exercise 28: Prove that a binary matrix M is a perfect phylogeny if and only if no two columns
of M contain rows with all three patterns (1,1), (1, 0) and (0, 1)) (i.e. M does not contain some
row-permutation of Mc as a submatrix).



20If a species-character matrix is not a perfect phylogeny, biologists attempt to construct a phylo-
genetic tree that is consistent with as much of the data as possible by eliminating columns of the
matrix (i.e. character data) which present conflicting evidence.

Definition 6. The conflict graph G = (V,E) associated with M = M(S, C) has V = C and
e = {ci, cj} ∈ E if and only if the corresponding columns in M display the patterns (1,1), (1, 0)
and (0, 1).

Note that M is a perfect phylogeny if and only if its conflict graph has no edges.

Exercise 29: Let U be a vertex cover in the conflict graph of matrix M(S, C). Prove that if
C′ = C\U , then M ′ = M(S, C′) is a perfect phylogeny.

Exercise 30: By eliminating a minimum set of characters, find a phylogenetic tree consistent with
a maximum amount of data in the matrix below.

M =



0 0 0 1 0
1 0 0 1 0
0 0 1 0 0
1 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 0 1 0 1
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