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Speaking discretely...
by Joseph G. Rosenstein

In the last few years a number of teachers have tried to introduce
topics of discrete mathematics into their classrooms. If you are one of these
teachers, then this newsletter is designed for you!

We hope to serve as a forum where teachers across the country can
share their ideas, their classroom activities and experiences, their successes
and failures, and their questions about implementing discrete mathematics in
the schools.

Have-you-seen...
by Joseph Malkevitch

... two recent articles in the New York Times
and the Wall Street Journal dealing with the
Traveling Salesman Problem.

When you use a public phone, you
deposit a coin in a box; eventually the coin
box fillsup and the phone company must have
an employee collect the coins. PROBLEM:

We also hope to assist you by inform-
1ng you aboutresources on which you can draw.
Not too much is available about teaching dis-
crete mathematics in the schools — although
that is changing -- and what there ismay be hard &

Find the shortest route that begins at city A,
visits the other four cities and returns to A.
Distances between cities are as indicated.

D

for you to locate. We hope to be of some
assistance in showing you where to look.
Many of you teach in schools where
you are the only one that has become enthusi-
astic about discrete mathematics, and some of

Given a collection of phone
booths to visit, design the most
efficient route, visiting each
phone booth site once and only
once to pick up the coins, and
starting and ending at the
collector’s place of work. See
the example in the diagram at
the left.

We can abstract the essen-

you have had to exercise much patience and
perseverance in order to get to teach these
topics. This newsletter is intended to provide
you with a national network of teachers who o
have had similar experiences.

NS\
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(Solution — page 8)

tial features of this situation.
We are given a collection of
sites which must be visited once
and only once, starting and re-
turning to a home base. To go

Most of you, we hope, have found teaching discrete mathematics
rewarding. It provides lots of opportunities to try the student-oriented
instructional techniques advocated in the NCTM Standards; for example,
many discrete mathematics problems (like the Traveling Salesman Problem
above) lend themselves readily to experimentation and conjecture, to hands-
on activities, and to group learning settings, and have many easily understood
applications. We intend to use this newsletter to advocate using discrete
mathematics to implement the Standards.

(Continued on page 2)

from site 1 to site j requires the payment of a
“cost,”’ c(iy). Often c(i,j) = ¢(j,i), but some-
times these two costs are not equal. (For
example, in driving, the distance fromitojis
usually different from the distance fromjtoi
due to the presence of one way streets.) Thus,
there are two versions of the problem to
consider, depending on whether or not the
cost function is symmetric.
The Traveling Salesman Problem
(or TSP, the traditional name for this prob-
lem) calls for finding the route used to visit the
collection of sites which involves the mini-
mum total cost. The reason for the name is
that a salesperson must solve a TSP in order to
find the minimum cost of visiting his/her
territory. Other situations requiring the solu-
tion of a TSP include picking up fish catch
from sites where nets have been set, parcel
postdeliveries, gasmeterreaderroutes, meals-
on-wheelsroutes, picking upkids to take them
(Continued on page 9)
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Reports... The NCTM Annual Meeting
by Julia E. Magana

New Orleans. City of hot jazz, cold hurticanes, and discrete math-
ematics. Atleastthatis how I viewed this dynamic city during the NCTM 69th
Annual Meeting.

Many different topics on a variety of levels were discussed, but this
was the first time in 69 years that the NCTM focused on discrete mathematics
and its applications in K - 12 curricula.

There were many workshops with discrete mathematics themes,
some giving just overviews and other dealing with specific topics. ‘‘Imple-
menting the Discrete Math Standard in the Secondary School Classroom™, a
workshop conducted by NancyCrisler, Gary Froelich, and Larry Spence, used
John Dossey’s Discrete Mathematics and the Secondary Mathematics Cur-
riculum as away of presenting different discrete mathematics topics to people
of a variety of mathematical backgrounds.

After reviewing the Dossey materials, many teachers realized that
some of the discrete math topics, such as combinatorics, probability, matrices,
and linear programming are discussed in textbooks which they have been
using for years. Other topics however, like graph theory, apportionment and
fair division, difference equations, and fractals are new to the high school
classroom.

The 1991 NCTM Yearbook, Discrete Mathematics Across the
Curriculum K- 12, wasreleased atthe meeting, and its contents were reviewed
by editor Margaret Kenney. A sample of other presentation titles includes
‘* Applications of Finite, Discrete and Combinatorical Mathematics’’, **Graph
Theory -- The Queen of Discrete Mathematics™', "‘Activities in Discrete
Mathematics: Backpacks, Yearbooksand Trees’’, and **Counting, Matching,
Graphing: Discrete Mathematics in Elementary School™’.

A number of sessions at the conference dealt with specific discrete
math topics such as chaos and fractals.

Heinz-Otto Peitgen spoke on ‘‘Fractals for the Classroom: The
Fascinating Concept of Chaos and Fractals.”” He began with an in-depth
discussion of the ‘‘chaos game’’, which is one of the key entrance points to
the study of fractals. This then led to the idea of using limits as a way to
describe self-similarity. Peitgen's reference material was a newly released
NCTM publication, Fractals For the Classroom, which he coauthored (see
complete reference on bottom of page 4).

Robert L. Devaney also gave a talk on chaos and fractals but he
concentrated more on the use of iteration to create dynamical systems. “*This
18 a branch of research mathematics that is accessible,”” he said. “*We are
talking about quadratic functions!’’. Devaney’s book Chaos, Fractals and
Dynamics provides an introduction to these three topics using a combination
of hands-on computer experimentation and precalculus mathematics.

Besides going to the workshops and meeting mathematicians from
all over the world, I also visited the Exhibit Hall which was full of displays
on ‘ ‘the most current mathematics education products, publications, software,
and services’’ including an increasing number of discrete math materials.
This year’s NCTM Annual Meeting was definitely a great experi-
ence! For a discrete mathematician, it offered more than in past years and

Speaking discretely...

(Continued from page 1)

This is the first 1ssue of the newslet-
ter. It was assembled and largely written by
teachers in the Leadership Program in Dis-
crete Mathematics at Rutgers University. We
hope that future issues will have your contri-
butions as well.

We are particularly interested in hear-
ing about topics that you have used in your
classes, about how your students have re-
sponded to discrete mathematics, and about
how discrete mathematics has affected your
approach to teaching. We look forward to
hearing from you.
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Teaching briefs... Fractals in the Classroom
by Elyse Magram, with guotes from an
article in the school newspaper by Keith Knittel

The classroom isa beehive of happy activity. Small
groups sit clustered, eagerly measuring, talking quietly,
contemplating the next generation of figures. The atmo-
sphere is charged with the sounds of a video that shows a
multitude of fractal colors and patterns. The computer
program generating a fractal tree slowly adds branches to the
varying trunk. Is this a scene from ‘‘Stand and Deliver’’?
No, a unit on fractals in one of my classes.

You know how excited she gets when she learns

something new...she introduced virtually all of

Smithtown West to the wonderful world of fractals.

I would like to share with you the enthusiasm
generated in four of my high school classes as I introduced
this multifaceted topic -- which I learned about mostly onmy
own. I found that fractals could be used equally with the
slower learnersin a 10th grade class and the brighter students
in precalculus. Is it possible that through playing with
fractals, the slow learners can achieve brightness? I now
believe so.

We began the unit with a discussion of these self-
similar figures and their applications in nature.

Fractals contain the property of self-similarity.

In each fractal there are shrunken, repeated ver-

sions of the same shape. In nature, coast-lines,

Jerns, clouds, trees, lungs, intestines, and popcorn
all have repeated fractal shapes. The coastline of

Ireland has been matched to a computer generated

Sractal. In police work, crimes have been found to
Jollow fractal patterns. Meteorologists have used
fractals to chart the paths of tornadoes.

Then we proceeded to ““make’’ fractals. Students
loved doing ‘“‘art’” in math class, and to measure carefully
and creatively. They found the Koch snowflake (see [l]us-
tration on page 4) particularly fascinating, and were in-
trigued with the lace-like effect of the fractal fern. The class
worked cooperatively, sharing materials and ideas. The
mathematics abounded, for we discussed a variety of topics,
such as ratio of perimeters and areas, similarity, and the
percent colored after each generation. In calculus classes,
we discussed the limit of the perimeters and areas.

I highly recommend the topic as fascinating, color-
ful, a wonderful change of pace in a classroom, and one that
will produce amagnificent outcome. Fractals get ahigh vote
for one of the best math topics going.

Senior Nick Mequia says that *‘fractals are by far

the most interesting things in the world’’ and is

reported to have devoted his entire life to fractals.

Teaching briefs... Maps and Graphs
by Susan H. Picker

Toextend the Konigsberg Bridge problem, and show
students the applied nature of graph theory, it is very easy to
construct maps with interesting Euler path/ciruit problems. 1
have found maps of cities with bridges such as New York,
Paris, and Amsterdam to be particularly suitable, but any
regional map can become the source of an imaginative
problem requiring students to use their knowledge of the
principles of graph and network theory. Below and on page
9 are two examples I have used with great success in both
remedial and honors classes.

The map below depicts the bridges and tunnels
connecting Manhatten with the other boroughs of New York
City and with New Jersey. Is it possible to start at the
Meadowlands in New Jersey, travel each bridge and tunnel
exactly once and end at Shea Stadium in Queens? Isit possible
to start at the Meadowlands and end at Yankee Stadium in the
Bronx? Draw a graph and explain your answers.
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Teaching briefs... Digraphs and Relations
by Ruth Ann Krayesky

Have you ever considered using a digraph, or directed graph — with arrows instead of edges, to explain relations and
their properties? Fehr, Fey and Hill’s Unified Mathematics presents a model that has been useful in helping my students to
understand relations.

Starting with a finite set and a relation, arrange the elements of the set in a circular pattern. These elements become
the vertices of our graph. Next draw an arrow from each element to every element of the set to which it is related. These arrows
become the directed edges of our digraph.

For example, the relation ‘X is older than Y’’ among five students in the class might result in Graph L.

If every element has an arrow to itself, then the relation is reflexive. If whenever there is an arrow in one direction
between two elements, there is also an arrow between the two elements in the other direction, then the relation is symmetric.
And if whenever there is a directed path between vertices made up of two edges there is also an arrow from the initial vertex
to the terminal vertex, then the relation is transitive. (Note: In this case, there is an edge connecting the vertices whenever there
is a directed path - of any number of edges -- between the vertices.)

For example, the relation depicted in Graph II is symmetric and reflexive, but not transitive. Can you find the smallest
transitive relation containing the relation in Graph III?

E I b C a b
o ? ——
d L g
U e
Graph I Graph II Graph III
Tllustrations... Koch snowflake
The Koch snowflake (referred Each of the twelve line seg-  triangle whose sides are all 27 centime-

to on page 3, column 1) is obtained by =~ mentsofthe resultingstarisreplacedby  ters. (When you try to draw it yourself,
starting with an equilateral triangleand ~ a similar pattern to obtain the third  you’ll see why it helps to start with a
replacing each side by the pattern -- generation picture -- power of 3.

Worksheets for carrying out

iterations for other fractals can be found
| in Fractals for the Classroom: Strate-
gic Activities Volume I, by Heinz-Otto

Peitgen et al., Springer-Verlag and

— obtaining a six-pointed star.

/.
N

-- which begins to resemble the Koch
snowflake obtained by repeated itera-
tions of this ‘ ‘replacement procedure™’.
To generate this snowflake, your stu-
dents should first draw an equilateral
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Topics... What the Computer Can and Cannot Do

by Frances Marcello

In this age of seemingly limitless technology, one might assume that there is no job a computer can’t do. But the real
question is “‘Can we wait for the computer to finish?’’.

The problem used to discuss this question appears in Dynamic Programming -- An Elegant Problem Solver, by Cliff
Sloyer et al., Janson Publications, Inc. (1987).

PROBLEM: You are givena 30 x 30 grid with a number on each edge representing the time required to travel that
edge. Find the fastest path (consisting of North and East directions only) to get from point A to point B.

When I presented this problem to my students and asked for a possible solution, they immediately gave me the brute
force approach -- simply find the lengths of all paths and then choose the smallest.

The question ‘“How much time would you need to calculate the solution?’’ resulted in answers from 30 minutes to as
long as 2 weeks. ‘“How much time would a computer operating at 100,000 operations per second require?’’ ““No time at all!!*’
was the unanimous opinion.

We decided to analyze the problem to confirm their opinion. Here are three simplified versions of the problem:

Consider the 2 x 2 grid at the left. A path here requires
traversing 4 edges, e.g., ENEN. Since each path consists
of 4 edges with 2 N’s and 2 E’s, there are ,C, =6 paths
to calculate. How many additions are necessary to deter-
mine the length of each path? E + N + E + N requires 3
additions. We need to perform ,C, - 3 = 18 additions.

Now consider the 5 x 5 grid at the right. Here we traverse
10 edges, e.g., NEENNENNEE. The 10 edgesof 5 N’s
and 5 E’s produce ,,C, =252 paths. Each path requires
9 additions for a total of C, - 9 = 2268 additions.

Now consider a 10 x10 grid. We are up to 20 edges of 10 N’s and 10 E’s resulting in ©C o = 184,756 paths. With
19 additions per path we would have , C, - 19 =3,510,364 additions.

By this time students were astonished to see the number of paths and operations skyrocket as we went from 2 to 3
to 10 unit square grids. And we weren’t finished. Now we had to select the shortest path!

""How many comparisons are necessary to find the shortest path?’’ Again we use brute force. We compare the 1st

pathto the 2nd, choose the smaller, compare that to the 3rd, choose the smaller, ... continuing until all paths have been compared.

Our 2 x 2 grid requires ,C - 1=15 comparisons.
Our 5 x 5 grid requires |, C. - 1 =251 comparisons.

Our 10 x 10 grid requires , C, - 1=184,755 comparisons.

Finally we sum the total number of operations required and find the time required for our computer to finish its job.
Total operations = (number of additions) + (number of comparisons)
Time required = (total operations)/100,000 seconds

The 2x 2 grid requires a time of .00023 seconds, the 5x 5 grid a time of .02519 seconds, and the 10x 10 grid a
time 0f36.95119 seconds. At this pointI can hear asigh of relief; after all, even though the number of operations seemed large,
the job can still be done in a feasible amount of time.

But then the class returned to the original problem, looking at the 30 x 30 grid. We have established some patterns
we can use to help in the calculations. The gridhas C,, paths with 59 additions per path and will require Cso- 1 cOmparisons
to find the shortest path. Carrying out the usual calculations yields the result that the 30 x 30 grid requires about 7.0 x 107
seconds.

(Continued on Page 9)



Credits...

The contributors to the first
issue of the Newsletter have been par-
ticipants of the Leadership Program in
Discrete Mathematics at Rutgers Uni-
versity, New Brunswick, New Jersey.

The editors of this issue of the
Newsletter are Susan H. Picker and
Joseph G. Rosenstein. This issue was
composed on Pagemaker by Virginia
Moore of DIMACS.

The Leadership Program in
Discrete Mathematics is funded by the
National Science Foundation (NSF) and
is co-sponsored by the Rutgers Univer-
sity Center for Mathematics, Science,
and Computer Education (CMSCE) and
the Center for Discrete Mathematics
and Theoretical Computer Science
(DIMACS), which isalso providing the
funding for the Newsletter. Joseph G.
Rosenstein is Director of the Leader-
ship Programin Discrete Mathematics.
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Announcement...

The next issue of this Newslet-
ter will describe programs in discrete
mathematics planned for the summer of
1992. Readers are asked to submit
information about such programs. The
Leadership Program in Discrete Math-
ematics at Rutgers University is de-
scribed in more detail on page 11, as is
a program based at Boston College.

Authors...

L. Charles (Chuck) Biehl teaches at
Thomas McKean High School in
Wilmington, Delaware.

Ruth Ann Krayesky teaches at
Eisenhower Middle School 1in
Bridgewater, New Jersey.

Julia E. Magana teaches at Washing-
ton Township High School in Sewell,
New Jersey.

Elyse Magram teaches at Smithtown
High School West in Smithtown, New
York.

Joseph Malkevitch is a professor of
mathematics at York College of the
City University of New York.
Frances Marcello teachesat Oceanside
Senior High School in Oceanside, New
York.

Susan H. Picker is a Staff Develop-
ment Specialist at the Office of the
Superintendent for Manhattan High
Schools, New York. |

Joseph G. Rosenstein is a professor of
mathematicsat Rutgers University, New
Brunswick, New Jersey.

Subscriptions...

Please send us the name, ad-
dress, phone number, and school ofany
teacher who should receive a copy of
this Newsletter, and we will include
him/her on our mailing list.

Encouraging words...

This is your Newsletter - that
means that its success will be dependent
on the willingness of you the readers to
share your discrete thoughts and class-
room experiences - your use of written
materials and software — your informa-
tion about resources — your questions
and responses - your cartoons and prob-
lems — your articles and announce-
ments.

So while you are going about
your way in discrete mathematics, keep
the Newsletter in mind, and if you no-
tice something that might be of interest,
write a few paragraphs to submit to the
Newsletter.

You will be thanked profusely
by the other readers of IN DISCRETE
MATHEMATICS... Using Discrete
Mathematics in the Classroom.

Feedback...

Your comments on this 1ssue,
however brief, will be valuable to us in
planning future issues. Here are some
questions to which you can respond:

Which articles did you find most (or
least) useful or interesting?

What types of articles would youlike to
see more of?

Was there an appropriate balance
between different types of articles?

What suggestions do you have for
future issues?

DIMACS...

The Center for Discrete Math-
ematics and Theoretical Computer Sci-
ence (DIMACS) is a national Science
and Technology Center (STC) founded
by the National Science Foundation
(NSF); it was formed in 1989 as a
consortium of four institutions-- Rutgers
University, Princeton University, AT&T
Bell Laboratories, and Bell Communi-
cations Research.
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Topics... Two Problems Involving Graphs
by Joseph G. Rosenstein

Here are two problems which can be stated very
simply; the first may be familiar to you but the second you
have probably not seen before. What dotheyhave in common,
and how are they connected with discrete mathematics?

PROBLEM 1: Can you use 31 1x2 dominos to cover the 62
squares of an 8x8 chessboard obtained by deleting two
diagonally opposite corners?

PROBLEM 2: A mouse eats her way through a 3x3x3 cube
of cheese by tunnelling through all of the 27 1x1x1 minicubes.
If she starts at one corner of the cube and always moves to an
adjacent uneaten mini-cube, can she finish at the center of the

cube?

You may want to think about the first problem fora
few minutes, in which case you should probably stop reading
this article for the time being. You may even want to find a
chessboard and play with the problem a bit.

If you solved the problem, you realized first that the
two unused squares have the same color, and then noticed that
the two squares covered by any domino have opposite colors.
(Unless you are really good at ““visualization’’, you would
probably not have discovered the first fact without using areal
chessboard.) Thus 31 non-overlapping dominos must cover
31 squares of one color and 31 squares of the other color,
leaving uncovered one square of each color! So diagonally
opposite corners cannot both be uncovered.

If your students have learned a little about graphs,
they should probably be able to discover the graph that
underlies this problem. Itis a graph with 64 vertices, namely
the squares of the chessboard; two vertices are adjacent (inthe
graph theory sense) if the corresponding squares are adjacent
(in the physical sense).

The normal coloring of the chessboard — involving
red and black squares - provides what is called a coloring of
the graph. In a coloring of a general graph, adjacent vertices
must have different colors. Graph colorings have many
applications, to problems as diverse as map colorings, sched-
uling committee meetings (see article to the right and box on
page 10), traffic lights, and radio frequency assignments. If
you are interested in learning more about colorings of graphs,
one source is The Mathematician’s Coloring Book, by Rich-
ard L. Francis, in the HIMAP Module Series published by The
Consortium for Mathematics and Its Applications (COMAP).

Graphs which can be colored using two colors are
often called bipartite graphs, since the vertices can be sepa-
rated into two sets with adjacency occurring only between
vertices in different sets. The chessboard graph is bipartite

(Continued on page 10)

Spreading the Word... Introducing Teachers to
Discrete Mathematics by L. Charles Biehl

On March 21-22, the Maryland State Department of
Education held the third annual Dwight D. Eisenhower Math-
ematics and Science Conference in Baltimore, Maryland.
The focus for mathematics teachers was the NCTM Stan-
dards, and I was fortunate to be selected to give a presentation
in discrete mathematics, entitled From Final Examsto T raffic
Jams: Using Graphs to Resolve Conflicts.

The audience consisted of more than forty math
teachers from all over Maryland, only a few of whom were
familiar with graphs. The purpose of this presentation was to
give these teachers enough exposure to feel comfortable with
the basic ideas of graphs and graph coloring, to provide them
with access to additional materials for further study, and to
enable them to teach a one or two day lesson on the topic in
their own classes.

After laying the foundation for the topic, 1 showed
that conflicts that arise in a variety of situations can be
modeled with graphs; examples include scheduling meetings
for people who had multiple responsibilities (see Hllustration
on bottom of page 10), assigning frequencies to mobile radio
telephone relay stations, scheduling final examinations at a
small college, and sequencing green lights at an intersection.
To resolve the conflicts in each situation, we had to define
what the conflict was and assign the minimum number of
““colors’’ (or meeting times, or relay towers or traffic light
changes) to ensure that no one had to be two places at the same
time, no radio frequencies interfered with each other, no cars
collided, etc.

All the actual problem solving was done by the
participants; I encouraged them to work in pairs or groups.
Once the ice was broken and the first problem had been solved
(in more than one way, I should add) the workshop continued
as a lively problem-solving session, with participants con-
vincing themselves of the correctness of their solutions by
comparing notes with neighbors. The final ten minutes of the
hour was spent discussing the underlying concepts, their
applications to other and more diverse situations, and a
plethora of potential classroom activities.

This presentation was a big step for me. It was one
thing to present this material to a small group of colleagues in
my district; but to present to a group twice the size, and to
strangers no less, filled me with apprehension and a fear of
being asked questions I could not attempt to answer. This
must be the feeling that we all had when we first entered the
profession. After the first five minutes I was completely at
ease, and I felt that the participants were t00.

Discrete mathematics topics work extremely well in
this type of environment, since they can be learned and
appreciated atmany levels. The same istrue in the classroom,

(Continued on page 10)
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Mini-bibliography... Graph Theory
by Joseph Malkevitch

One of the most appealing topics in discrete math-
ematics is graph theory. The subject is quick starting,
geometric, rich in applications (e.g. robot motion planning,
examination scheduling, snowplowrouting, etc.), and abounds
in easy to explain unsolved problems. Here is a bibliography
describing six relatively elementary books on the subject,
followed by three intermediate level books and three which
are more advanced.

Elementary:

Biggs, N., Lloyd, E., and Wilson, R. Graph Theory 1736-
1936, Clarendon Press, Oxford, 1986. This is a paperback
reissue of an earlier hardbound history of graph theory. It
includes excerpts from some of the major papers contributing
to the early development of the field.

Chartrand, Gary, Introductory Graph Theory, Dover, New
York. This paperback book covers digraphs, traversability
problems, connectivity, and mathematical modeling.

Malkevitch, Joseph, and Meyer, Walter, Graphs, Models, and
Finite Mathematics, Prentice-Hall, Englewood Cliffs, 1974.
This book’s beginning chapters illustrate how by using graphs
to construct mathematical models various problems in opera-
tions research can be solved. Topics treated include
traversability, the critical path method, and coloring prob-
lems.

Ore, Oystein, Graphs and Their Uses, Mathematical Associa-
tion of America, Washington, 1963. (Revised edition: 1991,
R. Wilson). Thisintroductory paperback book covers coloring
problems, puzzles and games, traversability problems, trees,
and matchings. The original version is a bit dated, but the
revised version, updated by Robin Wilson, includes signifi-
cant new material.

Steen, Lynn (ed.), For All Practical Purposes, (second edi-
tion) W. H. Freeman, New York, 1991. The beginning
chapters of this book apply mathematical modelling tech-
niques to a variety of problems. Topics treated include
traversability problems, minimum cost spanning trees, and
the critical path method. Five video tapes from the TV series
with the same title support the written materials.

Wilson, Robin, and John Watkins, Graphs: An Introductory
Approach, John Wiley and Sons, New York, 1990. Topics
covered include: planarity, trees, colorings, digraphs, and
applications of these concepts.

Topics... Recursively Expanding Enthusiasm
by Elyse Magram

One can’t help but be amazed at the number of
rabbits that are predicted by the Fibonacci numbers, a recur-
sive pattern which begets a combinatorial explosion —- 75,025
rabbits by the twentieth generation, and many more to come,
all generated from the simple recurrence relation r =1 +
r ,wherer,=1andr =1. This reminds me of the enthusiasm
that has steadily grown in me since meeting discrete math-
ematics.

After 25 years of teaching, with two children in
college, it seemed to be a good time to expand my horizons.
““Why pursue math?’’ asked my friends, ‘‘take something for
fun, something light and colorful, something for joy.”” How
could they understand that all this and more could be fulfilled
for me in a math institute. This I found when I attended the
Leadership Program in Discrete Mathematics at Rutgers
University.

The work was overwhelming. The professional
contacts were superior. The interrelationships between the
participants, dedicated teachers, was incredible. We were
exposed to distinguished speakers who introduced us to graph
theory, algorithms, combinatorics, fair elections, and compu-
tational geometry. We worked together, alone, in twos and
fours - all day, in the evening, and on the weekends, too. We
griped, we laughed, we sang, we burned the midnight oil. The
contact and the sharing have been a true highlight in my
teaching this year.

The material is exciting to use in class. The Tower
of Hanoi was an excellent motivation for sequences and series
in precalculus. Matrices were greatly enhanced by introduc-
ing the topic of secret codes. Map coloring and optimization
were exciting to students at all levels. My students enjoyed
doing an optimal time problem for lasagna preparation.
Minimum spanning trees intrigued the slowest students,
especially in planning condominiumroads (see [llustrationon
top of page 10) and going through rat mazes. My students’
intuition was awakened, and they found thatmath isreally fun.
There is such wonder in seeing the range of applications that
mathematics has.

Teaching discrete mathematics can change your
outlook as well; Turge you to search out a local program toadd

vitality and joy to your teaching.

Solution... TSP (Continued from box on page 1)

There are altogether 24 possible routes, correspond-
ing to the 4! arrangements of B, C, D, and E; however, only
12 calculations are necessary since the 24 includes the reverse
of each route. The shortest route is ACBEDA (or its reverse)
with a total length of 92. Curiously, you don't travel from C
to D which are the nearest pair of cities.
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The Traveling Salesman Problem...
(Continued from page 1)

to camp, sequence of motions of a robot arm in working on a
job, etc.

The TSP offers opportunities to study algorithms, to
look at different kinds of distance, to use enumeration meth-
ods, toinvestigate mathematical modelling, and even to allow
grade schoolers to practice arithmetic.

The Wall Street Journal article cited below gives an
account of some new ideas developed by two employees of
Dupont to solve the assymetric TSP. The New York Times
article is concerned with recent work on TSP problems which
mvolve a very large number of sites; it has little overlap with
the other article. An elementary treatment of the TSP can be
found in Chapter 2 of the book cited at (4). A history of the
TSP can be found in the first article (by A. Hoffman and P.
Wolfe) of the book cited at (5); this book consists of many
excellent survey articles, parts of which are accessible to all
readers.
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Hllustration... Maps and Graphs

Topics... What the Computer Can and
Cannot D0 (Continued from page 5)

““Is this a long or a short period of time?’’ My
students are not sure. We calculate that there are approxi-
mately 3.15 x 107 seconds per year and so the job will require
(7x10%/3.15 x 10") =2 x 10° or 2 million years to complete,
and that’s a conservative figure.

Student reactions ranged from a simple ““Wow!!”’
to *‘I wouldn’t want to pay that electric bill!”’. And the
response I was looking for -- **What do we do now?’’. The
following sessions covered short-cut algorithms, including
dynamic programming (see reference cited above). And no
one in class lost sight of the fact that time efficiency was a
crucial element in any algorithm we analyzed.

Another good example of ‘‘computational explo-
sion’’ or ‘‘computational infeasibility’’ is given in Number
Theory and Public-Key Cryptography, Mathematics Teacher,
January 1991. Here the time required for a computer to factor
the product of two 100 digit primesis 3.8 billion years, making
this cryptosystem reasonably secure.

Ask a Discrete Question...

Dear Euler, Having read the article on page 5 on the
limitations of computers, I understand that building a com-
puter which runs twice as fast will only cut the time in half.
But one of my students suggested that if each year computers
double in speed, then the ‘‘computation explosion’ will
eventually catch up with the **combinatorial explosion’. Is
that true? Perplexed.

Dear Perplexed, Firstofall, that'sa very big ““if.”” Secondly,
eventually can be a long time. If you remain perplexed, I
suggested you seek out a mathematical counselor.

(Continued from article on page 3)

Is it possible for the Paris bridge
sweepers to leave their depot on Citadel
Island, sweep each bridge just once and re-
turn to their depot?

A huge potato spill has resulted in
the closing of bridges 1 and 2. Can the
sweepteam now start at the depot, sweep
bridges 3-15 and return to their depot without
repeating a bridge? Draw a graph and explain

your answers.




IN DISCRETE MATHEMATICS...

Topics... Two Graph Coloring Problems Hlustration... Planning Roads
(Continued from page 7) (Continued from article on right of page 8)
because red squares are adjacent only to black squares and Which of the roads in the picture should be built if

conversely. Try drawing a few other bipartite graphs and  we want to connect all six locations at the smallest possible
verifying that their vertices can be colored using two colors.  cost? (The cost to build each road is given in thousands of
Yourassignment, if youacceptit,isto figureoutwhat  dollars.)

all of this has to do with the second problem. (And, ifthe terms
are familiarto you, how these problems involve matchings and
Hamilton paths.) The solution will appear in the next issue. If
you use these problems in class, please write a few paragraphs
for the next Newsletter telling us what happened.

Spreading the Word... Introducing Teachers to

Discrete Mathematics
(Continued from page 7)

and I can say with assurance that the enthusiastic response
received from teachers in workshops I have conducted has
been matched, if not exceeded, by the response of the students
In my own classes.,

D . T E—— e L B e

This problem is taken from HiMAP module 6, Problem
Soving Using Graphs, by Margaret Cozzens and Richard
Porter, COMAP, Arlington, MA (1987).
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Mini-bibliography... Graph Theory

(Continued from page 8)

Intermediate;

Barnette, David, Map Coloring, Polyhedra and the Four-
color Problem, Mathematical Association ofAmerican, Wash-
ington, 1983. This book treats topics about graphs and
polyhedra related to the four-color problem. Euler’s polyhe-
dral formula (V-E+F=2) is treated in detail.

Beineke, Lowell, and Wilson, Robin (eds.), Selected Topicsin
Graph Theory, 1, 2, and 3; Applications of Graph Theory,
Academic Press, New York, 1978, 1983, and 1988. These
volumes contain a collection of survey articles which cover a
tremendous amount of the graph theory landscape. Topics
covered include hamiltonian ciruits, chromatic polynomials,
communications networks, applications to architecture, etc.
Although nominally designed for researchers in graph theory,
these books can be looked at for ideas by relative beginners.

Capobianco, M., and Molluzzo, J., Examples and
Counterexamples in Graph Theory, American Elsevier, New
York, 1978. This book includes a rich variety of graph
examples that show that certain theorems are best possible.

Advanced:

The last three books are popular advanced under-
graduate and graduate texts. However, since graph theory is
sorelatively accessible, parts of these books will be appealing
to relative newcomers to the subject.

Bondy, J.A., and Murty, US.R., Graph Theory with Applica-
tions, American Elsevier, New York, 1979.

Chartrand, G., and Lesniak, L., Graphs and Digraphs (sec-
ond edition), Wadsworth, and Brooks/Cole, Monterey, Cali-
fornia, 1986.

Harary, F., Graph Theory, Addison-Wesley, Reading, Mas-
sachusetrts, 1969.

Implementation of NCTM Discrete Mathematics
Standard Project

This three year project based at Boston College gets
underway July 13, 1992 with a three week summer leadership
workshop in which teachers with prior experience teaching
discrete math are trained to become members of leadership
teams that will instruct groups of teachers in summer work-
shops at six sites in years two and three of the project.
Information and applications are available from the Project
Director, Dr. Margaret Kenney at the Boston College Math-
ematics Insitute, Chestnut Hill, MA 02167.

...USING DISCRETE MATHEMATICS IN THE CLASSROOM

Leadership Program in Discrete Mathematics --
Summer 1992

During the summer of 1992, the fourth annual Lead-
ership Program in Discrete Mathematics will take place at
Rutgers University, New Brunswick, New Jersey. Two three-
week residential institutes are scheduled for June 29 to July
17, 1992.

One institute will be designed primarily for high
school teachers; a second parallel institute will be designed for
middle school teachers and elementary mathematics special-
ists. Middle school teachers may attend either institute.
Participants will be expected to attend follow-up sessions
during the 1992-1993 school year and a one- or two-week
program in the following summer.

Participants will also be expected to develop mate-
rials and activities for incorporating discrete mathematics
topics in their classes, to play leadership roles in introducing
these topics into their schools and curricula, and to conduct
workshops on these topics in their schools and districts.

The three main topics in the three-week program for
high school teachers will be applications of graphs, algo-
rithms and graphs, and combinatorics. In the following
summer, additional topics in discrete mathematics will be
covered during a two-week program.

The three-week program for middle school teachers
will deal with applications of graphs, combinatorics, prob-
ability, geometry, and fractals. In the following summer, a
one-week program will be designed to help participants
consolidate their knowledge of these topics.

Also offered will be a seven-day leadership training
program for teachers who are experienced with discrete
mathematics. Participants will develop materials for in-
service workshops and will be expected to offer these work-
shops in various schools during the 1992-93 school year. The
dates of the program are May 15-16 and July 27-31, 1992.

Anticipated funding from the National Science Foun-
dation will pay for participants’ room and board, and a stipend
of $300 per week of the program. The Leadership Program
in Discrete Mathematics is sponsored by the Center for
Discrete Mathematics and Theoretical Computer Science
(DIMACS) and the Center for Mathematics, Science, and
Computer Education (CMSCE) at Rutgers University.

Applications will be due by March 13, 1992. To
receive an application form, please call Stephanie Micale at
908/932-4065, or write to CMSCE - Leadership Program,
P.O. Box 10867, New Brunswick, New Jersey 08906.




IN DISCRETE MATHEMATICS...

What Do Mathematicians Do?

If one asks the “‘person on the street’’ what
plumbers, electricians, chemists, or geologists do, they
are likely to give you a reasonable answer. Put in more
dramatic terms, when home-owners see water cascading
through the ceiling, they do not call a carpenter or a
mathematician. But few people on the street know when
to call a mathematician.

One thing that we can do about mathematics’
image problem is to discuss how mathematics affects
people’s lives, even if we cannot always do proper justice
to the mathematics involved. For example, we can say
that mathematicians (not chemists or plumbers) study
waiting lines, and show that this can be applied at banks,
airports, and in computers. Or, we can say that mathema-
ticians find shortest paths and networks, and show that this
can be applied to travel arrangements and telephone
connections.

The above paragraphs are adapted from **Math-
ematics’ Image Problem’ by Joseph Malkevitch (see
address on page 11). The cartoon on the right was drawn
by Joe Pipari one of whose colleagues at Thomas McKean
High School (Wilmington, Delaware) participated in a
discussion with Malkevitch at the 1990 Leadership Pro- -
gram in Discrete Mathematics.
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