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ABSTRACT

The following module introduces students to a version of the Network Design problem (NDP) that
arises in the planning for communication networks. The objective in NDP is to find a sub-network
in a given graph for which the total of some associated fixed and variable costs is minimized. A
fixed cost is usually associated with placing or activating the link between some pair of nodes.
The variable cost associated with a link is proportional to the number of connections supported by
the link. In this module we focus on a case of NDP in which all traffic originates at some central
location, so the underlying sub-network will form a spanning tree.

The module is intended for undergraduate or graduate students taking a course involving
Network Flows, Integer Programming, or Optimization. It is designed for a student that has been
introduced to some basic concepts of networks, including the Shortest Paths problem and the
Minimum Spanning Tree problem. To solve the problem described in this module requires the
student to find a spanning tree that is a compromise between the optimal solutions of these two
problems. Even this relatively simple version of the Network Design problem is NP-Complete, so
the focus of the module is to present easy-to-implement heuristic solution methods. Instructors
are encouraged to have advanced students establish some heuristic approaches of their own. A
spreadsheet model is also provided with code that allows students to evaluate the cost of their
solution proposals. In addition, we show how small problem instances can be solved to optimality
using widely available spreadsheet software. These spreadsheets can be used to test the effectiveness
of the heuristics proposed.

The module is designed to support a variety of teaching methods, e.g., individual, cooperative,
or lab-based. A single example is followed throughout the discussion. Each section in the module
ends with an exercise based on the example, which requires the student to immediately apply the
concepts presented. We recommend that these exercises be performed with the instructor as part of
the classroom experience. Additional examples that can be assigned as homework or lab exercises
are also provided.
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The Telecommunications division of Megabucks Finance Corporation wants to build a private
communications network that connects its corporate headquarters (HQ) with its branch offices
around the city. Each link in this network is a physical passageway between a pair of locations,
(above or below the ground), over which cables are routed. The network must have an arrangement
of links to connect HQ with each of the branch offices using dedicated fiber cables. To establish
a link requires activities such as digging trenches, running wires through duct-work, applying for
permits to dig into the street, and/or reserving space on telephone poles or in conduits. A local
telephone company or cable service provider is usually called upon to perform these tasks. Some
links in the network cost more to establish than others, depending on the physical location, the
terrain to be built upon, and whether some infrastructure already exists. Once established, a link
can hold any number of cables. The total cost of the system depends on which links are established
for the network and the total amount of cable and equipment that has to be placed to make the
desired connections, which often depends on the lengths of the routes used.

Megabucks wishes to minimize the total cost of the system, so it must find routes for the
cables that are relatively short in total distance, while avoiding expensive links wherever possible.

1 Introduction

The situation above is an instance of what is formally referred to as the Network Design problem.
In a Network Design problem (NDP), one is given an undirected graph where each node represents
a key location and each edge represents an eligible location for a network link. Transmission paths,
(e.g., fiber-optic cables), are required to connect various pairs of nodes. These cables can only be
routed across links that have been selected for inclusion into the network. The relatively simple
situation for Megabucks Corp. is represented by the graph in the following figure. The nodes
represent corporate headquarters (HQ) and the branch locations. The edges represent viable links
for the network. In this instance, a cable connection is required between HQ and each of the other
five nodes.

A (3,1) B

(1,5) (2,4) (8,3)

HQ (4,2) (1,2) E

(2,2) (4,3)

C (5,2) D

Figure 1

The edges in the graph have labels for the (fixed, variable) costs. The fixed cost on the edge
between node i and node j, denoted by Fij(= Fji), represents the cost of establishing the link
between these locations. The variable cost on the edge, denoted by Cij(= Cji), represents the cost
incurred by each transmission cable that uses the link in its route. For Megabucks, it represents
the cost of placing a cable along the link and equipping it with repeaters and optical/electrical
converters as needed. If the link between nodes i and j is not established, then the associated
fixed cost is not incurred. Otherwise, if X transmission cables pass through the link, then the cost
incurred at the edge is

Fij + CijX.
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The objective in NDP is to minimize the total fixed and variable costs while providing the
desired connections. A feasible solution to the problem consists of a cable route for each desired
connection. The associated network design refers to the set of links in the union of the edges
traversed by these routes. In an attempt to minimize the costs, a common design requirement is
to insist that the connections be supported using as few links as possible. This is accomplished if
the union of the cable routes forms a spanning tree of the network, i.e., a minimal set of edges that
connect together all of the nodes without forming any cycles. In fact, for the Megabucks problem,
where all of the desired cable connections originate at headquarters, the optimal network design
must be a spanning tree. (This point is demonstrated in an exercise at the end of the module).

For the network in Figure 1, one possible spanning tree design looks as follows.

A (3,1)            B

(1,5)                        (2,4)                         

HQ            E

(2,2) (4,3)

C            D

The total of the fixed costs, $12, is obtained by summing up the left values from each edge in
this sub-network. The desired cable connections in the network design must be routed using only
these edges. Recall that for a spanning tree, there is exactly one choice for the route between any
pair of nodes. The variable costs associated with the cable routes originating at HQ and terminating
at each of the other nodes are calculated by summing the right values from the edges in each path,
as illustrated below.

HQ   HQ to C: $2

(2,2) 

C   

A

(1,5)

HQ                  HQ to A: $5   

A           (3,1)               B

(1,5)

HQ                       HQ to B: $6             
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A                             
HQ to D: $9

(1,5) 
(2,4)

HQ             

D

A           
HQ to E: $12

(1,5) 
(2,4) E

HQ             (4,3)

D

The total of the variable costs is $5 + $6 + $2 + $9 + $12 = $34. Adding the fixed costs,
we see that the solution has a total cost of $34 + $12 = $46.

Alternatively, the total cost calculation can be performed on a per edge basis as follows:

A              (3,1)            B
(1,5)                        

(2,4)                         
HQ            E

(2,2)                                      (4,3)

C       D

Four cables pass through (HQ, A), so the cost incurred at the edge is: 1 + 5×4 = $21.
One cable passes through (HQ, C), so the cost incurred at the edge is: 2 + 2×1 = $4.
One cable passes through (A, B), so the cost incurred at the edge is: 3 + 1×1 = $4.
Two cables pass through (A, D), so the cost incurred at the edge is: 2 + 4×2 = $10.
One cable passes through (D, E), so the cost incurred at the edge is: 4 + 3×1 = $7.
So the total cost of the solution is $46.

Exercise: Find the total of the fixed and variable costs associated with the following spanning
tree design.

A         B 

(3,1)

(1,5) (8,3)
(2,4)

HQ E

C               (5,2)           D
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2 Network Design Problem Notation

Let n represent the number of nodes in the network. One of these nodes is designated as a root
node. For the network in Figure 1, HQ must be the root node because all of the desired cable
routes originate there. For more general problem instances any node can serve as the root.

Let T represent a subset of n − 1 edges that comprise a spanning tree for the network.
Henceforth, we will only consider network design solutions of this form. For some non-root node j,
we define the predecessor of node j, denoted pred(j), to be the node that precedes j in the unique
path in T from root node to node j. The root node has no predecessor. Using this notation, one
can specify the edges in a tree as a sequence of predecessor nodes. For example, the spanning tree
for the network design solution shown in the figure above can be represented as follows:

Node: HQ A B C D E
Predecessor: Ø HQ A HQ A D

For a tree T , let F (T ) to be the total of the fixed costs from the edges in T .
For each cable connection desired, there is a unique route that uses the edges in T . Let

X(i, j) denote the number of times edge (i, j) is used by some route. Clearly X(i, j) = 0 for edges
that are not in T . Let V (T ) be the total of the variable costs incurred by these cable routes, which
is equal to ∑

j

Cpred(j),jX(pred(j), j).

Using this notation, we say that the Network Design problem is equivalent to finding a spanning
tree T such that F (T ) + V (T ) is minimized.

3 Heuristic Solution Techniques

Finding a spanning tree having the smallest total fixed and variable costs is a complex task. The
tree that minimizes the fixed costs may have large variable costs associated with it; the tree that
minimizes the variable costs may use edges with large fixed costs. To find the optimal solution
would require a method that mediates between these two objectives. At present, there is no
efficient method known that finds the optimal tree, even for this special case where all of the
desired cable routes originate at the root node. Any method that is guaranteed to find the optimal
solution requires some form of enumeration, e.g., checking the total cost associated with every
possible spanning tree. For most communications networks, this approach is unacceptable. The
small network shown in Figure 1 has over 45 possible trees. For larger networks, the number of
possible spanning trees could be in the hundreds of thousands or in the millions! It would be
impossible to examine every possibility within a reasonable amount of time.

As an alternative to expending the effort to find an optimal tree, it may be acceptable to find
a less- than-optimal solution that we believe to be relatively cheap. For example, it is reasonable
to settle on a solution that is known to cost only a small percentage more than the best possible,
if it would take too much effort and time to find a solution that is appreciably better. A heuristic
method for solving a complex problem, like this one, is defined to be an efficient and reasonable
approach to determining a feasible solution. Heuristics methods are usually used to find quality
feasible solutions to a problem in situations where it is considered too costly, in time and effort, to
search for the optimal solution.

As the name implies, a heuristic method exploits some thoughtful analysis of the problem
to suggest a reasonable solution. As observations about the problem are made and special char-
acteristics of the problem are discovered, some solution methods may make themselves apparent.
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For example, one could identify some special cases of the Network Design problem for which it is
relatively easy to find an optimal tree. Then the method that solves this special case can be used
as a heuristic method for the more general cases. Another approach is to find a different problem
that has many of the same characteristics as the Network Design problem. Then the successful
methods that are used for this problem may be modified to generate good heuristic methods for
Network Design. Some examples of these approaches are provided in the following sections. The
reader is encouraged to expand and modify this list.

3.1 Applying a Minimum Spanning Tree Algorithm

Observation: If an instance of the Network Design problem is such that the variable costs are all
0, then the optimal network design is the set of edges that comprise a Minimum Spanning Tree
(MST) over the fixed costs.

Since the only costs incurred in such an instance of the network design problem are the fixed
costs associated with establishing the links, there can be no cheaper solution than the spanning
tree with the minimum total cost, i.e., the MST. There is reason to believe that this solution would
also be cost effective for instances of the Network Design problem where the variable costs are very
small, relative to the fixed costs.

Finding the Minimum Spanning Tree in a graph can be accomplished using any of a number
of efficient algorithms. (Consult your class textbook for details.) An implementation of Prim’s
algorithm for finding a MST is presented below. The nodes in the network are labeled 1, . . . , n,
where node 1 is the root node. The input to the algorithm is a symmetric n × n matrix of edge
weights, called Weight. Invalid edges are given a very large weight value. To use Prim’s algorithm
as a heuristic for Network Design, we assign appropriate values to the weight matrix, e.g., set
Weight(i, j) equal to Fij . The output is the set of predecessor nodes that represents the spanning
tree of minimum total weight.

Prim’s Algorithm

Set S = {1}; Set T = {2,...n};
Set pred(1) to 0;
For j = 2 to n Set pred(j) to 1;
For step = 1 to n-1 do

Let j* = arg min {Weight(pred(j),j) | j in T}
Set S to S + {j*}; Set T to T - (j*};
For all i in T do

If Weight(j*,i) < Weight(pred(i),i)
Then Set pred(i) to j*;

Example 1: Find the Minimum Spanning Tree for the network given in Figure 1, using the
fixed costs as edge weights. Calculate the total cost of the network design associated with this
solution.

Solution: The following MST is found using Prim’s algorithm with Weight(i, j) = Fij . The
total of the fixed costs is $1 + $2 + $2 + $1 + $4 = $10.

9



A                                 B

(1,5) (2

HQ
(1,2)                          E

(2,2

,4)

) (4,3)

C D

The variable costs are calculated as follows. The route from HQ to node A costs $5; the
route from HQ to node B costs $5 + $4 + $2 = $11; the route to node C costs $2; the route to
node D costs $3; and the route to node E costs $12.

The sum of the fixed and variable costs associated with this solution is $49. In this case,
the solution is not very cost effective because the variable costs are not small, relative to the fixed
costs, so perhaps they shouldn’t be ignored by the heuristic.

A modification to the heuristic, which may produce a better solution, is to set the weight
matrix to incorporate the variable costs as well as the fixed costs. For example, set Weight(i, j)
equal to Fij +Cij and run the Prim algorithm for that matrix, or set Weight(i, j) to Fij +2Cij and
run the Prim algorithm. More generally, one can set Weight(i, j) equal to Fij + αCij for various
positive values of α, run the Prim algorithm for each, evaluate the associated total cost, and select
the best of the network designs found. Since the Prim algorithm can be implemented to run very
quickly, a large number of scenarios can be examined.

Example 2: Find the Minimum Spanning Tree for the network given in Figure 1, using the
matrix Weight(i, j) = Fij + 2Cij . Calculate the total cost of the network design associated with
this solution.

Solution: The following tree is found using Prim’s algorithm with those weights. The total
of the fixed costs of the edges from the tree is $2 + $4 + $3 + $1 + $4 = $14

A                                 B

(3,1)

HQ (4,2) (1,2) E

(2,2) (4,3)

C             D

The route from HQ to A has a total variable cost of $4; the route from HQ to B costs $5;
HQ to C costs $2; HQ to D costs $7; and the route from HQ to E costs $10. The total cost of the
design is $42, which is less than the cost of the design found by considering only the fixed costs for
link selections.

Exercise: Find the Minimum Spanning Tree for the network given in Figure 1, using the matrix
Weight(i, j) = Fij + 3Cij . Calculate the total cost of the network design associated with this
solution.
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3.2 Applying a Shortest Paths Algorithm

Dijkstra’s algorithm is a commonly used method to find the route of shortest total length between
a pair of nodes in a network. Consider the shortest route between root node 1 and node 2, the
shortest route between node 1 and node 3, . . ., and the shortest route between node 1 and node
n. The union of these n − 1 routes can be reduced to a set of edges that comprise a spanning tree
for the network. We define this tree to be the Shortest Paths Tree (SPT) rooted at node 1. As we
shall see, Dijkstra’s algorithm can be used to find a SPT.

Observation: If an instance of the Single-source Network Design problem is such that the
fixed costs are all 0, then the optimal network design is the set of edges that comprise the Shortest
Paths Tree rooted at the source node, using the variable costs as edge lengths.

Problem instances with no fixed costs arise when the only costs are associated with placing
the cables. This happens if the network has infrastructure that is already in place. In such cases,
finding the shortest route for each desired connection, with the variable costs serving as edge
lengths, solves the Network Design problem. Hence, there is reason to believe that for instances
where the fixed costs are small, relative to the variable costs, the SPT provides a cost-effective
solution to the Network Design problem as well.

An implementation of Dijkstra’s algorithm to find an SPT is provided below. The nodes in
the network are labeled 1, . . . , n, where node 1 is the root node. The input to Dijkstra’s algorithm
is a non-negative n× n matrix of edge lengths, called Length. Invalid edges are given a very large
length value. To use Dijkstra’s algorithm as a heuristic for Network Design, we assign appropriate
values to the length matrix, e.g., set Length(i, j) equal to Cij. The output is the set of predecessor
nodes that represents a spanning tree that minimizes the total of the lengths of the routes from
the root node.

Dijkstra’s Algorithm

Set S = {1}; Set T = {2,...n};
Set pred(1) to 0; Set path(1) to 0;
For j = 2 to n Set pred(j) to 1;
For step = 1 to n-1 do

Let j* = arg min {path(pred(j))+ Length(pred(j),j) | j in T}
Set S to S + {j*}; Set T to T - (j*};
Set path(j*) to path(pred(j*))+ Length(pred(j*),j*)
For all i in T do

If path(j*)+ Length(j*,i) < path(pred(i))+ Length(pred(i),i)
Then Set pred(i) to j*;

Example 3: Find the Shortest Paths Tree for the network given in Figure 1, using the
variable costs as edge lengths. Calculate the total cost of the network design associated with this
solution.

Solution: The following SPT is found using Dijkstra’s algorithm with Length(i, j) = Cij..
Next to each node is placed the sum of the variable costs for the path from HQ.
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A (4) (3,1) B (5)

HQ (0) (4,2) E (7)

(2,2) (4,3)

C (2)            (5,2)        D (4)

The total of the variable costs is $4 + $5 + $2 + $4 + $7 = $22, i.e., the sum of the path
values at the nodes. The total of the fixed costs is $2 + $4 + $3 + $5 + $4 = $18. So the total
cost of the design is $40.

In many cases this heuristic approach suffers because fixed costs may not be small, relative
to the variable costs, so they shouldn’t be ignored by the heuristic. A method that addresses this
issue is presented in one of the exercises.

Two important points arise:
1) The smallest possible value for the total of the fixed costs is found by using Prim’s algo-

rithm, ($14 in this example), and the smallest possible value for the total of the variable costs is
found by using Dijkstra’s algorithm, ($22 in this example). Therefore, we know that the optimal
network design cannot have a total cost that is less than the sum of these two values, ($36 in this
case). This value can be used to judge the quality of the solution obtained by any heuristic.

2) For most networks, as in our example, the Shortest Paths Tree and the Minimum Spanning
Tree are usually comprised of a different set of edges, even if they are based on the same set of edge
weights / lengths. If an instance of network design is such that the SPT based on the variable costs
and the MST based on the fixed costs results in the same tree, then this tree must be the optimal
network design because it would achieve the lower bound noted above.

3.3 A Local Improvement Heuristic

The term Local Improvement refers to a solution method where one starts with some reasonable
(but not necessarily optimal) solution to a problem and then checks to see if some small change to
the solution would result in a lower total cost. For some problem types, this method ultimately
finds the optimal solution. For such problems, when no improvements are possible, the solution
can be shown to be optimal.

The challenge for more complex problems, like Network Design, is that there is no known
local improvement method that is guaranteed to terminate with an optimal solution. That is, it
may be possible to have a solution for which no marginal improvement is possible, yet the solution
is far from optimal. In such cases, Local Improvement methods are used as heuristic tools to obtain
a locally optimal solution rather than a global optimum.

The following Local Improvement algorithm, which is often referred to as a Network Simplex
method, finds the optimal solution to the Shortest Paths problem. Since the problem is similar to
the Network Design problem with a single source, there is reason to believe it will be an effective
heuristic.

Step 0: Start with some spanning tree of the network. Call this the Present Tree.

12



Step 1: Consider placing a new arc (i, j) in the solution, (where j is not in the route
from the root node to node i). To maintain the tree structure, (pred(j), j) must be
removed from the solution. Call this new tree the Candidate Tree.

Step 2: If the Candidate Tree has a smaller total cost than the Present Tree, set the
Candidate Tree as the new Present Tree.

Step 3: If no new arc provides an improvement over the Present Tree

Then STOP. The Present Tree is the solution.

Otherwise GOTO Step 1.

Appendix 1 describes a set of Excel spreadsheets that can be used to apply this approach
manually. Code is provided that reads in a proposed tree solution and quickly calculates the total of
the associated fixed and variable costs. A new arc is placed in the tree by changing the predecessor
of one of the nodes. The code then evaluates the cost of the new tree. The code also indicates when
a proposed solution is not feasible, i.e., when the specified set of edges does not form a spanning
tree.

A more sophisticated implementation of Local Improvement, which we call the Shortcut
Method, is described below. In this heuristic, a calculation is made that determines in advance
whether some arc (i, j) would provide an improvement over the Present Tree T .

For the nodes in tree T , we require two labels:

Clabel(j) is set to the sum of the variable costs in the unique route in T between the
root node and node j.

X(j) is set to the number of cable routes crossing the edge (pred(j), j) in T

A shortcut arc is an edge (i, j) /∈ T , where j is not in the route from the root to node i and:

Fij + (Clabel(i) + Cij)X(j) < Fpred(j),j + Clabel(j)X(j).

Including a shortcut arc would result in cost savings over Present Tree T . The Shortcut heuristic
is as follows:

Step 0: Start with some spanning tree of the network; call this the Present Tree. For
each node j, find the values for X(j) and Clabel(j).

Step 1: Repeat the following steps until no shortcut arcs are found:

If (i, j) is a shortcut arc place (i, j) in the Present Tree and remove (pred(j), j).
Set pred(j) to i.

Recalculate the values of Clabel() and X() for this new tree.

We point out that during each iteration, edge (i, j) may be examined twice: once as the arc from
node i to node j, and once as the arc from node j to node i. It is possible for edge (i, j) to be a
shortcut in either direction.

In order to implement this algorithm on a computer, the programmer will have to make some
choices. First, he or she will have to determine which spanning tree to start with for Step 0. The
method visits a sequence of tree solutions until it finds one in which no immediate improvement is
possible. In a typical instance of NDP, there are many such solutions. Starting this process with
two different trees would probably generate two different sequences, so may lead to two different
final solutions (or local optima). We recommend running the algorithm for a variety of starting
trees, then selecting the best of the final solutions encountered.
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Example 4: Using the SPT solution as a starting tree, determine the values of Clabel(j)
and X(j) for every node j. List all of the shortcut arcs based on this solution.

Solution: For each node j, the value for Clabel(j) is placed in bold next to node j. The
value for X(j) is placed in bold on edge (pred(j), j).

A (4)        (3,1)           B (5)

(1,5) 1

(2,4) (8,3)
HQ 2 (1,2)
(0)          (2,2)          (4,2) E (7)

5                                                               1
2 (4,3)

C (2)         (5,2)             D (4)

Fij + (Clabel(i) + Cij)X(j) Fpred(j),j + Clabel(j)X(j) Shortcut?
(HQ,A): 1 + (0 + 5) × 2 = 11 4 + 4 × 2 = 12 Yes
(A, D): 2 + (4 + 4) × 2 = 18 5 + 4 × 2 = 13 No
(B, D): 1 + (5 + 2) × 2 = 15 5 + 4 × 2 = 13 No
(B, E): 8 + (5 + 3) × 1 = 16 4 + 7 × 1 = 11 No
(D, A): 2 + (4 + 4) × 2 = 18 4 + 4 × 2 = 12 No
(D, B): 1 + (4 + 2) × 1 = 7 3 + 5 × 1 = 8 Yes
(E, B): 8 + (7 + 3) × 1 = 18 3 + 5 × 1 = 8 No

The edge (HQ, A) has a fixed cost of 1 and a variable cost of 5. It is a shortcut arc because
(1 + (0 + 5) × 2) < (4 + (4 × 2)). So including the edge and removing edge (C,A) results in a cost
savings of $1. The edge (D,B) is also a shortcut arc.

The second choice a programmer is faced with is to determine which of the shortcut arcs,
if there are more than one, to add to the Present Tree solution. One approach is to use the first
shortcut arc encountered. Another approach is to use the shortcut arc with the greatest difference
in the inequality; this is the arc that provides the greatest immediate benefit. The first has the
advantage of requiring less work per iteration; the second provides for greater descent in total cost
per iteration. For a variety of reasons, neither approach is guaranteed to find a better final solution
than the other one.

Example 5: Give the new design associated with adding edge (HQ,A). Update Clabel() and
X() for this new solution.

Solution: This new design has a total cost of $39:

A (5)          (3,1)          B (6)
(1,5) 1
2 (2,4) (8,3)

HQ (0) (4,2) (1,2)
E (7)

3       
(2,2) (4,3)

        1
     2

C (2)          (5,2)           D (4)
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We emphasize that the solution obtained by the Shortcut heuristic may not be optimal.
Moreover, since starting with different initial trees, or examining the potential shortcut arcs in
different orders, a variety of solutions can be obtained. None of these are guaranteed to have a cost
that is “good”, i.e., within some range of the optimal. The only known way to obtain a solution
with such guarantees is to apply some form of enumeration of the possible spanning trees. On
the other hand, the solution obtained through this heuristic has the property that there are no
obvious shortcuts. This condition may be an acceptable criterion for our network design needs. To
capitalize on this approach, the final solution could be obtained by applying the heuristic to a fixed
number of distinct starting trees, run some implementation of the Shortcut heuristic for each case,
and then choosing the particular tree that has the smallest associated costs.

Exercise: Determine whether there are any shortcut arcs in the solution from Example 5. If there
are make the appropriate improvement to the solution. Repeat the process until no immediate
improvement is possible.

Exercises

1) Consider the network with the following (fixed, variable) costs:

    1

(10,5) (12,3)
(5,7)

(9,8) (3,12)
HQ    2        4

(5,9)
(13,6) (6,6)

   3

Determine which of the following three spanning trees yields the smallest total cost.
a)

Node: HQ 1 2 3 4
Predecessor: Ø HQ HQ HQ 1

b)

Node: HQ 1 2 3 4
Predecessor: Ø HQ HQ HQ 2

c)

Node: HQ 1 2 3 4
Predecessor: Ø HQ HQ HQ 3

2) Consider the network with the following (fixed, variable) costs:
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          1

(10,3) (6,7)
(15,4)

HQ       3

(9,5) (12,2)

2

a) List all eight spanning trees for this network.
b) Find the optimal network design from among these possible trees.

3) Determine the number of different spanning trees for the graph given in Exercise 1.

4) Consider the following network.

           1

(10,2) (4,2)
(7,10)

HQ       2

(9,5) (12,2)

3

a) Evaluate the total fixed and variable costs associated with the solution specified by the
routes: HQ to 1, HQ to 1 to 2, and HQ to 2 to 3.

b) The feasible solution given in part a) uses the following links.

          1

HQ       2

3

Notice that this network is not a spanning tree. Use this example to demonstrate that within
any non- tree feasible solution, there is a spanning tree feasible solution whose total cost is no
greater.

5) Consider the network with the following (fixed, variable) costs:

          2 3

(8,10) (15,6)     (3,4)
(25,9)    

        1    6
(8,2)

(12,9) (6,5) (5,1)

4 5
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a) Compute the total fixed and variable costs of the following tree design.

Node: 1 2 3 4 5 6
Predecessor: Ø 1 6 1 2 1

b) Find the values of Clabel and X for each of the nodes in the tree.
c) Using the values for Clabel and X determine whether (5, 3) is a shortcut arc.
d) Using the values for Clabel and X determine whether (3, 5) is a shortcut arc.
e) Show that arc (5, 6) is a shortcut arc.
f) Give the new solution when arc (5, 6) replaces arc (1, 6) in the spanning tree. Determine

the improvement in total cost.

6) For the network with the following (fixed, variable) costs:

2 (1,1)            3

(4,5) (2,7) (6,3)

1               (3,3)                                                               4
(1,2)

(2,3)) (4,2) (4,3)

6 (5,2)                 5

a) Calculate the total fixed and variable costs of the following spanning tree design:

Node: 1 2 3 4 5 6
Predecessor: Ø 6 6 3 3 1

b) Use Prim’s algorithm to find a Minimum Spanning Tree using the fixed costs as edge
weights. Calculate the total fixed and variable cost associated with this design solution.

c) Use Dijkstra’s algorithm to find a Shortest Paths Tree rooted at node 1, using the variable
costs as edge lengths. Calculate the total cost associated with this solution.

d) Use your answers to parts b) and c) to determine a lower bound to the total cost of an
optimal solution.

e) Use Prim’s algorithm to find a Minimum Spanning Tree using the sum of the fixed and
variable costs as edge weights. Calculate the total cost associated with this design solution.

f) Using the best of the solutions found in parts a) to e), find the value of Clabel and X for
each of the nodes. Determine whether there are any cost improving shortcut arcs. If there are,
make the appropriate change to the network design solution.

g) Continually repeat part f), performing the Local Improvement heuristic until you arrive
at a solution for which there are no shortcut arcs.

7) For the network with the following (fixed, variable) costs:

2 (8,1)          4

(6,3) (7,4) (4,1)

1 (3,1)                             3                 (7,6)

(2,5) 5                                  (6,3)                

(2,8) (3,3)
(1,2)

6 (2,3)        7
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a) Calculate the total fixed and variable costs of following spanning tree design:

Node: 1 2 3 4 5 6 7
Predecessor: Ø 1 6 3 4 1 5

b) Use Prim’s algorithm to find a Minimum Spanning Tree using the fixed costs as edge
weights. Calculate the total fixed and variable costs associated with this design solution.

c) Use Dijkstra’s algorithm to find a Shortest Paths Tree rooted at node 1, using the variable
costs as edge lengths. Calculate the total cost associated with this solution.

d) Use Prim’s algorithm to find a Minimum Spanning Tree using the sum of the fixed and
variable costs as edge weights. Calculate the total cost associated with this design solution.

e) Use your answers to parts b) and c) to determine a lower bound to the total cost of an
optimal solution.

f) Using the best of the solutions found in parts a) to d), find the value of Clabel and X for
each of the nodes. Determine whether there are any cost improving shortcut arcs. If there are,
make the appropriate change to the network design solution.

g) Continually repeat part f), performing the Local Improvement heuristic until you arrive
at a solution for which there are no shortcut arcs.

8) A modification to the heuristic that applies Dijkstra’s algorithm to find a tree solution is to
set the length matrix to reflect the fixed costs as well as the variable costs. For example, set
Length(i, j) = Cij + Fij and run the Dijkstra’s algorithm for that matrix, or set Length(i, j) =
Cij + 1

2Fij and run Dijkstra’s algorithm.
More generally, one can set Length(i, j) = Cij + αFij for various values of α between 0 and

1, run Dijkstra’s algorithm for each, determine the total cost associated, and then select the best
of the network designs found. (Note: The value of α should probably be small since only a fraction
of the fixed cost is incurred on a per-connection basis).

a) For the network in Figure 1, use Dijkstra’s algorithm to find the Shortest Paths Tree using
the matrix Length(i, j) = Cij + Fij . Calculate the total cost of the network design associated with
this solution.

b) Find the Shortest Paths Tree using the matrix Length(i, j) = Cij + 1
8Fij . Calculate the

total cost of the network design associated with this solution.
c) Repeat parts (a) and (b) using the network given in Exercise 6.
d) Repeat parts (a) and (b) using the network given in Exercise 7.

9) Consider the network with the following (fixed, variable) costs:

          2 (12,12)    3

(1,1) (10,11) (10,2)                

   1   4   5

(1,1) (5,14) (1,1)

         6 (1,1)            7

a) Show that there are no shortcut arcs for the spanning tree given by

Node: 1 2 3 4 5 6 7
Predecessor: Ø 1 4 2 7 1 6
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i.e., that arcs (2, 3), (3, 2), (4, 6), and (6, 4) are not shortcut arcs.
b) Show that the absence of shortcut arcs is not a sufficient condition for an optimal solution

by finding a different spanning tree whose total cost is lower than the spanning tree given in part
(a). (Hint: Consider an interchange that adds two arcs and drops two arcs at the same time.)

Appendix 1: Network Design Evaluation using Spreadsheets

Spreadsheet software is a popular tool that is used in business and personal computing to perform
basic storage and analysis of quantitative data. Because such software nowadays has powerful
capabilities and is easy to use, spreadsheets are also used as teaching tools to effectively describe
quantitative problems and various approaches to their solution. In this section we show how spread-
sheets can be used to quickly evaluate the cost of a proposed tree design solution, even for fairly
large problem instances. Such functionality could be used to implement the Local Improvement
heuristic method by allowing the user to visit a large number of solution proposals before selecting
a final design.

A spreadsheet-based file is typically called a workbook, which consists of a set of related
worksheets, each containing text, data, functions and formulas. A workbook also has access to
some computer programs (e.g., written in Visual Basic for Applications) that can be used to
manipulate the data in the worksheets. For Network Design Evaluation, we provide three sheets2,
called “Fixed Costs”, “Variable Costs”, and “Evaluator”, and a program called “Calculate”. The
worksheets containing the cost data are formatted as the following example illustrates.

“Fixed Costs”

A B C D E F G H
1 Node 1 2 3 4 5 6

2 1 10000 1 10000 2 10000 10000

3 2 1 10000 3 4 2 10000

4 3 10000 3 10000 10000 1 8

5 4 2 4 10000 10000 5 10000

6 5 10000 2 1 5 10000 4

7 6 10000 10000 8 10000 4 10000

8

“Variable Costs”

A B C D E F G H
1 Node 1 2 3 4 5 6

2 1 10000 5 10000 2 10000 10000

3 2 5 10000 1 2 4 10000

4 3 10000 1 10000 10000 2 3

5 4 2 2 10000 10000 10000

6 5 10000 4 2 10000 3

7 6 10000 10000 3 10000 3 10000

8

The first row and column of the worksheets are reserved for node labels to make data entry
easy. The cost for edge (i, j) is located in the (i+1)st row and the (j+1)st column in the worksheet.
Ineligible edges are represented with a sufficiently large cost value.

2This Excel workbook is available from the authors.
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The “Evaluator” worksheet contains the data associated with the size of the network and
the proposed solution. A button on the worksheet evokes the program “Calculate”, which retrieves
the data and places the costs on the sheet. A change to the tree is implemented by changing the
predecessor of one of the nodes. The code also indicates when a proposed solution is not feasible,
i.e., when the proposed set of edges does not form a spanning tree. A particularly large total cost
would indicate that some ineligible edge is used in the solution. The format of the “Evaluator”
worksheet and code for the “Calculate” program are provided below.

Tree Solution Evaluation:

# Nodes: 6 Total Fixed Costs 13
Total Variable Costs 18

Trial Solution:
Node Predecessor Total Cost: 31

1 0
2 1
3 5
4 1
5 4
6 5

Evaluate

Sub Calculate()
Dim pred(50), X(50) As Integer
Sheets("Evaluator").Cells(7, 3) = " "
n = Sheets("Evaluator").Cells(3, 2)
For i = 1 To n

pred(i) = Sheets("Evaluator").Cells(6 + i, 2).Value
X(i) = 0

Next i
For i = 2 To n

X(i) = X(i) + 1
prev = pred(i)
While Not (prev = 1)

X(prev) = X(prev) + 1
If (X(prev) > n) Then
prev = 1
Sheets("Evaluator").Cells(7, 3) = " NOT A TREE!!!!"
Else
prev = pred(prev)
End If

Wend
Next i
fixtot = 0
vartot = 0
For i = 2 To n

fixtot = fixtot + Sheets("Fixed Costs").Cells(1 + pred(i), 1 + i)
vartot = vartot + X(i) * Sheets("Variable Costs").Cells(1 + pred(i), 1 + i)
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Next i
Sheets("Evaluator").Cells(3, 6) = fixtot
Sheets("Evaluator").Cells(4, 6) = vartot
Sheets("Evaluator").Cells(6, 6) = fixtot + vartot

End Sub

Appendix 2: Solving the Network Design Problem as an Integer
Program

Additional approaches to solving the Network Design problem require formulating it as an Integer
Programming problem. The following notation will be used in the formulation, which represents
edge (i, j) in the network as two directed arcs (i, j) and (j, i):

n = the number of nodes

Fij = the fixed cost of arc (i,j). Note that Fij = Fji.

Cij = the variable cost of arc (i,j). Note that Cij = Cji.

Let yij be the binary decision variable that is set to 1 if arc (i, j) is included in the solution
and set to 0 otherwise. Let xij represent the number of cable routes from node 1 (the root node)
that are routed across arc (i, j). Note that if xij is positive, then yij must be 1.

The formulation for the single-source Network Design problem is as follows:

(1) Minimize
n∑

i=1

n∑

j=2

Cijxij +
n∑

i=1

n∑

j=2

Fijyij

Subject to:

(2)
n∑

p=1

xpj −
n∑

q=2

xjq = 1, j = 2, . . . , n

(3) Myij ≥ xij i = 1, . . . , n; j = 2, . . . , n
(4) yij ∈ {0, 1} i = 1, . . . , n; j = 2, . . . , n
(5) xij ≥ 0, integer i = 1, . . . , n; j = 2, . . . , n

Notice that the objective function (1) consists of two terms. The first term accounts for the
total variable cost, and the second accounts for the total fixed costs. Constraint set (2) represents
the ”flow-balance” constraints. It ensures that exactly one transmission path terminates at each
node j. Constraint set (3) is called the edging constraint set and ensures that if yij is 0, then no
cable route will use arc (i, j), i.e., xij would have to be 0. M is some large number that allows xij

to be unconstrained if yij is 1.
Using this formulation, the network design problem can now be solved using some general

Integer Programming solution tool. This means that it would be possible to obtain some solutions
without having to invest the time and effort to implement approaches that are specific to the
Network Design problem. However, one should not expect this approach to be effective for larger
problem instances, e.g., networks with a large number of nodes or networks that are somewhat
dense.

Finding Optimal Solutions with a Spreadsheet Solver

For moderately sized networks or networks that are sparse, one can obtain optimal Network Design
solutions by using the Integer Programming formulation and mathematical programming software.
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For example, Solver is an optimization program that is included in many spreadsheet software
packages, such as Lotus and Excel. It has been used to solve many well-known network flow
problems and can be applied to Network Design as well. Currently, the standard version of Solver
that is included in many spreadsheet software packages can be used to obtain optimal solutions for
the network design problem with networks containing 200 arcs or less.

To solve a Network Design problem with Solver, we set up a worksheet as indicated in the
following diagram. This example solves the problem given in Figure 1. Rows 4 to 19 represents
the eligible directed arcs in the network. Columns A to I represent the input data, i.e. the cost
and connectivity information. The path variables xij are represented in column K and the binary
decision variables yij are represented in column L. Column M represents the slack in the edging
constraints. Row 20 contains formulas that calculate the number of paths from HQ that terminate
at each of the nodes. For this problem, we want this value to be one. The total cost of the solution
is represented by a formula placed in cell L21.

A B C D E F G H I J K L M
1
2 Variable Fixe d Link Edging

3 From To Costs Costs A B C D E # Paths Used? Con stra ints

4 HQ A 5 1 1 0 0 0

5 HQ C 2 2 1 0 0 0

6 A C 2 4 −1 1 0 0 0

7 C A 2 4 1 −1 0 0 0

8 A B 1 2 −1 1 0 0 0

9 B A 1 2 1 −1 0 0 0

10 A D 4 3 −1 1 0 0 0

11 D A 4 3 1 −1 0 0 0

12 C D 2 5 −1 1 0 0 0

13 D C 2 5 1 −1 0 0 0

14 B D 2 1 −1 1 0 0 0

15 D B 2 1 1 −1 0 0 0

16 B E 3 8 −1 1 0 0 0

17 E B 3 8 1 −1 0 0 0

18 D E 3 4 −1 1 0 0 0

19 E D 3 4 1 −1 0 0 0

20 0 0 0 0 0

21 To ta l Cost: 0

The key formulas used in this spreadsheet model, using the Excel program are as follows.

E20 = SUMPRODUCT(E4:E19, K4:K19)
F20 = SUMPRODUCT(F4:F19, K4:K19)
G20 = SUMPRODUCT(G4:G19, K4:K19)
H20 = SUMPRODUCT(H4:H19, K4:K19)
I20 = SUMPRODUCT(I4:I19, K4:K19)
L21 = SUMPRODUCT(C4:C19, K4:K19) + SUMPRODUCT(D4:D19, L4:L19)

M4 = K4 - 100 * L4
M5 = K5 - 100 * L5
.
.
.
M19 = K19 - 100 * L19

In Excel, Solver can be accessed from the Tools menu. In the Solver dialogue box we must
enter the Target Cell which is L21, to be minimized. The Changing Cells are K4:K19 and L4:L19.
We must also input the following constraints:
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E20:I20 = 1
K4:K19 integers
K4:K19 >= 0
L4:L19 binary
M4:M19 <= 0

The last step is to access the Solver Options and input Assume Linear Model. All other
settings can be left at their default values. The following worksheet gives the optimal solution to
the problem in Figure 1. Observe that the optimal tree consists of arcs whose associated binary
variable is one; namely arcs from HQ to A, HQ to C, C to D, D to B, and D to E.

A B C D E F G H I J K L M
1
2 Variable Fixed Link Edging

3 From To Costs Costs A B C D E # Paths Used? Constraints

4 HQ A 5 1 1 1 1 −99

5 HQ C 2 2 1 4 1 −96

6 A C 2 4 −1 1 0 0 0

7 C A 2 4 1 −1 0 0 0

8 A B 1 2 −1 1 0 0 0

9 B A 1 2 1 −1 0 0 0

10 A D 4 3 −1 1 0 0 0

11 D A 4 3 1 −1 0 0 0

12 C D 2 5 −1 1 3 1 −97

13 D C 2 5 1 −1 0 0 0

14 B D 2 1 −1 1 0 0 0

15 D B 2 1 1 −1 1 1 −99

16 B E 3 8 −1 1 0 0 0

17 E B 3 8 1 −1 0 0 0

18 D E 3 4 −1 1 1 1 −99

19 E D 3 4 1 −1 0 0 0

20 1 1 1 1 1

21 Total Cost: 37
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Spreadsheet Exercises

1) Give the mathematical programming formulation for the network design problem specified by
the following network. Then use any mathematical programming software such as Solver to obtain
an optimal solution.

          2

(10,3) (6,7)
(15,4)

1       3

(9,5) (12,2)

4

2) Give the mathematical programming formulation for the network design problem specified
by the network below. Then use Solver to obtain an optimal solution.
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   2

(10,5) (12,3)
(5,7)

(9,8)
1           5         3

(5,9)

(13,6) (6,6)

4

3) Construct a spreadsheet model similar to the one described in Appendix 1 to find a solution
to the communication network design problem for the network given below.

(55,12)

(18,43)
(160,24) ( 12,38)

(19,5) (25,3) (175,12) (23,15)
(100,75) (130,96)

(13,8) (290,85) (95,65)

(175,12)
(280,9)          (175,85) (14,47) (28,23)

(100,70)

(29,46)      (17,53) (93,65)

(60,8)

(a) Find any spanning tree of this network. Use the Evaluator spreadsheet to determine the
total of the fixed and variable cost associated with your spanning tree design.

(b) Modify your tree by changing the predecessor to some node. Re-calculate the total costs.
If your new solution is an improvement, keep it; if not revert to your previous tree. Repeat the
process by adjusting another predecessor until you are satisfied with your solution.

(c) Repeat the process, starting with the MST, where Weight(i, j) is set to the value of the
fixed cost of the edge. Is your final solution any better?

(d) Repeat the process, starting with the MST, where Weight(i, j) is set to the sum of the
fixed and variable costs of the edge.

(e) Repeat the process, starting with the tree that is the SPT, where Length(i, j) is set to
the value of the variable cost of the edge.

4) Build the Solver spreadsheet model to find the optimal design for the network in Exercise 3
and find an optimal solution. How well does your heuristic solution obtained in Exercise 3 compare
to an optimal solution?

5) A more general version of the Network Design Problem is to design a network where every
node, except the root, requires d individual cable connections instead of 1. This type of problem
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may be modeled by changing the right hand side of constraint set (2) in the integer programming
formulation to d, instead of 1. For example, to find an optimal solution to this variation of the
problem for the Network given in Figure 1, one could use the same worksheet described in Appendix
2, and keep all inputs to the Solver dialogue box the same, except set cells E20:I20 = d, instead of
E20:I20 = 1.

(a) Use Solver to solve this version of the Network Design Problem for the network given in
Exercise 3, when d = 2, 5 and 10.

(b) Given a spanning tree, the average path length is the average of the lengths of each of the
n− 1 paths from the root to each node. Compare the average path length of the optimal solutions
obtained in part (a) to the average path length of the optimal solution obtained in Exercise 4. Why
do you suppose it changes?

6) a) Explain how the spreadsheet model given in Appendix 2 can be used to find a minimum
spanning tree for the network given in Figure 1.

(b) Use Solver to find a minimum spanning tree for the network given in Exercise 3 using the
fixed costs as weights. If the maximum time is exceeded before an optimal solution is found, try
increasing the maximum time (e.g., use 600 seconds.) Check your answer by finding a minimum
spanning tree using Prim’s algorithm.
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