Risk Assessment for Integrated Cyber and Physical Attacks on Stadiums and Transportation Systems

Fred S. Roberts Rutgers University froberts@dimacs.rutgers.edu

November 14, 2024

Manchester arena after attack Credit: en.wikipedia.org BBC picture

Credit: Wikimedia commons, <u>Jiří Karlík</u> from Studénka, Czech Republic, no changes

So What? Who Cares?

- Mission: Protect stadiums & transit systems from terrorist attacks
- Problem:
 - For stadiums & transit systems: Long-term interest in physical security, increasing interest in cyber security
 - But more sophisticated attacks could be multi-modal integrated
 - Cyber attack as precursor to physical attack, or vice versa
 Precursor attack not the end goal; aims to increase impact of following attack
- Solution Needed: Risk assessment
 - There is literature on RA for cyber attacks & for physical attacks
 - Large literature on RA for attacks on cyber-physical systems
 - Virtually nothing on RA for integrated attacks

Some work by FEMA, EU's SAURON project, SANDIA

- **RISK = threat x vulnerability x consequence**, but may only be able to calculate this qualitatively for integrated attacks
- Examples will show qualitative approach is feasible
- TRL = 2

Integrated Cyber & Physical Attacks

- Example: Hacking into the Stadium Jumbotron
 - Attack at Ariana Grande concert, Manchester, UK 2017
 - People attacked leaving
 - Could cyber attack on message board draw people out into a physical attack?
 - AFC Championship 2017: hack leads to message on Jumbotron
- Variant: Attack on Train Message Board telling passengers to go to track A
 - Hack on message board happened in Iran in 2021
- Example: Car Hacking on Stadium Roadway
 - Bad actor controls car remotely, causes crash
 - Remote control of Prius demo in 2013
 - Chaos on roadway makes it ripe for physical attack

Integrated Cyber & Physical Attacks

• Example: Rail Tunnel Attack

- Rail tunnels require pumping after storm
- Cyber attack disables pumping system; train gets stuck
- Physical attack on train follows

Image credit:Amtrak

- **Risk Assessment**: *How would a bad actor compare a standard physical attack to an integrated one?*
 - Not many examples (as yet) of successful cyber attacks on stadiums and train systems, making *threat* hard to estimate
 - Estimates of probability attack will succeed (*vulnerability*) are essentially speculation
 - *Consequences* could be large, so important to be able to estimate probabilities accurately, which is difficult
- Since assessment of threat & vulnerability is qualitative, it makes sense to approach the RA problem qualitatively at least to begin

RA: Hacking into the Jumbotron

- Attack A: Hack into Jumbotron, tell people to leave
- Attack *B*: Physically attack people leaving as result of *A*
- Integrated Attack I: A followed by B
- Attack X: Attack people leaving after event
- *Vulnerability*: *Success probability* P_A is high since Attack A seems feasible.
- For success probabilities: $P_{B/A} > P_X$: that is whole point of joint attack. If P_A sufficiently large, then $P_I > P_X$ and system is more vulnerable to I than to X
- *Threat (measured by cost)*: Cost of *A* is fairly small, so costs of *I* and *X* are close. So, **threats of** *I* **and** *X* **are close**
- *Consequence*: Almost surely **consequences of** *I* **are higher than consequences of** *X*
- Reasonable to conclude that I is of higher risk than X

RA: Vehicle Hacking at Stadium

- Attack *A*: Hack into vehicle causing chaos on stadium road
- Attack *B*; Physical attack while cars are stuck.
- Integrated Attack I: A followed by B
- Attack *X*: Physical attack *R* by a car ramming another car, causing chaos in road, followed by attack *B*
- *Vulnerability*: Success probabilities $P_{B/A}$ and $P_{B/R}$ are similar. Success probability P_A is lower than success probability P_R . So, system more vulnerable to attack X than attack I
- *Threat (measured by cost)*: Cost of *I* might be higher than cost of *X* if driver isn't afraid of death or arrest, so **threat of** *X* **is higher than threat of** *I*
- Consequence: Consequences for I & X likely to be similar
- This suggests that the risk of an integrated cyber and physical attack I is lower, and maybe considerably lower, than the risk of the two-part physical attack X

RA: Rail Tunnel Example

- Attack *A*: Hack into tunnel pump leads to train stuck
- Attack *B*: Following physical attack on train
- Integrated Attack I: A followed by B
- Attack X: Physical attack R on pump, leads to train stuck, followed by attack B
- *Vulnerability*: Hacking into pump may be much more likely to succeed than physically destroying it, so $P_A > P_R$. Also, $P_{B/A}$ is close to $P_{B/R}$
- So, $P_I > P_X$. System is more vulnerable to *I* than to *X*
- *Threat (measured by cost)*: Cost of *A* is likely lower than cost of *R*; cyber attack is easier than physical one.
- So, cost of *I* is less than cost of *X*, and **threat of** *I* **is higher than threat of** *X*
- Consequence: Likely that consequences are similar
- Reasonable to conclude that I is of higher risk than X