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Abstract. Chief among the inputs to decision making algorithms in narrative or
game environments is a model of player or opponent decision making. A chal-
lenge that will always face designers is to specify that model ahead of time, when
actual data from the environment is likely not to be available. Absent corpora of
data, designers must intuit these models as best they can, incorporating domain or
expert knowledge when available. To make this process more precise, we derive
a theoretically grounded technique to transfer an observed user model from one
domain to another. We answer the question: “How can a model obtained from
observations of one environment inform a model for another environment?” We
verify the accuracy of our techniques using data from previous user studies.

1 Introduction

Interactive narrative experiences are marked by two important characteristics: 1) a large
space of player interactions, some subset of which are specified as aesthetic goals by
authors; and 2) the affordance for players to express self-agency and interact in a mean-
ingful way. As a result, players are (often unknowing) participants in the creation of
their narrative experience. They cannot be assumed to be cooperative, nor to be adver-
sarial. Thus, researchers have designed computational paradigms that work with players
to co-create experiences without the need for goal-oriented models of player behaviors.
To effectively work with a (possibly unknowing) partner, systems rely on various types
of models that describe player behaviors. In this paper, we will look at probabilistic
models. More specifically, we will rigorously examine how what we learn in one nar-
rative or game environment can be put to use in a new environment (sometimes even a
new game), thereby alleviating the requirement for authors to create a new player model
from scratch. We will describe a way in which we can use quantitative or probabilistic
data from one domain to estimate the change in probability in a second domain that
a given alternative is preferred to another after an action has been applied to the first.
Further, this will allow us to use data from other domains to develop player models for
interactive narratives without the need for detailed hand authoring of the models.

The earliest work on interactive narrative is traceable to Laurel [7], who first pro-
posed the idea of a human Drama Manager (DM) to adaptively guide actors on stage to
bring about a better narrative experience for audience members. A human director can
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adapt their (possibly tacit) knowledge about how audiences may react to narrative adap-
tions in a variety of settings. Humans are very good at transferring knowledge between
domains, e.g., by learning a mental model of someone else’s behavior in one setting and
then applying that knowledge in another (possibly unrelated) setting.

After Laurel’s initial work, progress in drama management shifted almost exclu-
sively to algorithmic developments for computational realizations of DMs in virtual
environments (see Mateas [10] and Roberts & Isbell [17] for a surveys). Unfortunately,
while humans may be good at knowledge transfer between domains, computers are gen-
erally poor at transferring knowledge between domains. Therefore, the job of specifying
decision making rules for different domains falls upon humans, making the lessons a
computer can learn in one domain useless in other domains.

Notable among early efforts to move virtual drama management beyond “script-and-
trigger” decision making are those of Bates [1] and Weyhrauch [23]. They published
work on what ultimately became known as Declarative Optimization-based Drama
Management (DODM) [11]. A DODM instance relies upon a number of author-specified
components of the narrative environment and decision making processes, most notably
(for our purposes) a probabilistic model of player behavior and a set of actions the DM
can take to effect changes in player decisions. This model describes how players are
likely to transition through a narrative environment, given the history of the story and
DM actions. In practice, this can be very difficult to implement effectively [19,20,23].

In this paper, we derive a mathematical psychology-inspired method for transferring
the observed effectiveness of a DM action from one narrative domain to another. To
our knowledge, this is the first application of these mathematical psychology models
to game design. It will enable authors to design their models using data from previous
experiences, rather than having to engineer them based on intuition or educated guesses.

While our interest in drama management in general and the DODM formalism more
specifically led us to investigate this problem, our method is not limited to narrative
domains. In fact, any setting where a probabilistic model of player behavior serves as
input into a decision making algorithm can benefit from increased specificity. Despite
this generality, our approach is not universally applicable—there is no silver bullet.
Below, we will discuss conditions that might let our method yield accurate results.

2 DODM and Related Work

First proposed by Weyhrauch [23] as a problem of pseudo-adversarial search, DODM
has been studied in recent years as a formal decision making process [11,12,15,18]. A
DODM drama manager is characterized by four components: 1) a set of plot events
with precedence constraints; 2) a set of DM actions that operate on plot events; 3) a
probabilistic player model of the progression of events that encodes the likely behavior
of players; and 4) an evaluation function encoding author specified goals.

The player model is typically represented as a probability function P (S′|A, S) which
represents the probability of a story event S′ occurring immediately subsequent to a
story event S given that the DM has executed action A after story event S has occurred.
Actions are typically modeled as “operating on plot events” and generally take one of
three forms: deny an event, cause an event, or hint at an event. From our perspective,
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deniers and causes aren’t particularly interesting as their outcome is deterministic; how-
ever, the result of a hint, depending on how that hint is delivered, may change signifi-
cantly. Hence the need for a detailed model of probabilistic action effects. If P (S′|S)
is the probability that event S′ is chosen by a player after event S, and A operates on
S′, then likely P (S′|A, S) �= P (S′|S). How much different is a question traditionally
answered by authors’ estimates. The main contributions of this paper are two models
that enable this probability change to be estimated in a principled, data-driven way.

To date, the vast majority of the work on DODM has been abstract, so actions have
represented more general methods for adjusting the likelihood a player will experi-
ence a story event they operate on. For example, in the original formulation due to
Weyhrauch [23], the transition model was hand-authored based on a “best guess” of
how effective a class of actions might be. This best guess used a uniform distribution
over successive story events as a base case. When actions were applied to a particular
story event, the weight on that event was increased and the distribution recalculated by
normalizing the weights.

More recently, Sullivan et al. have examined two other types of player models that
encapsulate “world knowledge” about the story environment [19,20]. Based on the
Manhattan distance (or L1 norm), these models attribute a priori weights to plot events
based on the physical distance between the plot events and the player in the story en-
vironment. In order to extract probabilities, weights are normalized (as in the uniform
approach). When a DM action operates on a plot event, the weight can be updated ac-
cording to changes in the Manhattan distance between the player and the event trigger.

Lastly, Roberts et al. [14,16] have investigated the use of social psychology influence
techniques [2] as a framework for actions, delegating the implementation to a separate
process. By defining actions as the application of social influence in the environment,
data from existing studies in other domains that estimate probabilistic changes in play-
ers’ behaviors can be used to make similar estimates in a new domain. An advantage
over earlier approaches is that there is a vast literature describing evaluations of the
effectiveness of influence methods in various real-life settings that can be leveraged to
implement a player model. In addition to data collected from other virtual domains, data
from the psychology literature can be input into the algorithm we present below. We are
asking: “If we learn from one domain that an action has a certain measurable effect on
the probability that a player will prefer one alternative to another, what does that tell us
about the effect the action will have on the probability of preferring the first alternative
to a third in another domain?” For example, imagine players in an MMORPG are faced
with the choice between two quests and that they prefer the first with probability 0.4.
Further, suppose we know that when the “default effect” [6] is applied to the first quest
as a hint they choose it with probability 0.7. Lastly, suppose we know players tend to
prefer a third quest over a fourth with probability 0.5. We now want to know the proba-
bility they will prefer the first quest over a third if the default effect is applied to it. Our
method will rigorously answer that question.

3 A Method for Cross-Domain Transfer of Probabilities

Here we describe our technique for transferring probabilistic data between domains.



46 D.L. Roberts and F. Roberts

To make things concrete, suppose A, B, C, . . . represent potential outcomes and we
use a subscript 0 as in A0 to denote the outcome in the base situation and 1 as in
A1 to denote the outcome when an action has been applied to it. In the context of
an interactive narrative, these outcomes would be story events and the action applied
would be a hint. Recalling the above example of quests in an MMORPG, the outcomes
would be alternative quests and the action would be applying the default effect to the
choice. We will use alternative to mean an outcome with a treatment and we will use
letters X and Y when we deal with alternatives and don’t specify whether they involve
a base condition or condition with an applied action. We will use the letters A, B, C
to represent outcomes before we specify the condition. We would like to go from two
outcomes for which we have preference data in the base case to the probability the
first outcome with an action applied to it is preferred to the second. More generally,
we would like to calculate the probability P (A1 > C0), interpreted as the probability
that outcome A under the influence of an action is preferred to outcome C if no action
is applied, if we know P (A0 > C0), i.e., the probability that outcome A is preferred
to outcome C both without actions applied. This would give us a way to estimate the
effect of applying an action to an outcome.

We will discuss how to obtain such probabilities based on the types of data available
in the literature or that we might obtain from our own data collection. To use the model
we present here, we have to assume that the model of utility and preference we base
our work on accurately describes how people choose between alternatives and that the
magnitude of the effect of an action strategy observed on one set of alternatives will be
similar when applied to other alternatives. We acknowledge that our assumptions may
not always hold; however, even if they don’t hold our approach can provide a starting
point that authors can tweak if their intuition tells them the assumptions are violated.

3.1 Types of Data Available

Over the years, there have been countless social psychology studies published that de-
scribe the effects of influence on real-life situations. The results of those studies are
generally reported as either numerical data or probabilistic data. Both of these data are
easily obtained from experiments run on narrative or game environments as well.

The numerical data experiments report findings based on quantities or scales that
are directly measured. For example, Folkes et al. present an experiment measuring the
effects of product scarcity on usage [4]. Specifically, they conducted experiments where
participants were given a measured amount of shampoo in various sized containers.
The results of the experiment indicate that under certain conditions the more perceived
scarcity, the more the product is used by the study participants (e.g., 500 ml of shampoo
in a 1,000 ml bottle leads to 87 ml of use on average whereas 250 ml of shampoo in a
1,000 ml bottle leads to 121 ml of use [4]).

Another example of numerical data is that of Regan [13], who examined how reci-
procity in the form of a favor can lead to increased levels of compliance. Regan’s mea-
surements were of the quantity of lottery tickets purchased under different conditions.
When he reported that in the base condition study participants bought on average 1.00
lottery tickets whereas participants in the influence condition bought on average 1.91
lottery tickets, Regan was able to show reciprocity’s significant effect on quantity.
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On the other hand, data are sometimes reported using frequencies or probabilities. In
that case, the effects of the different study conditions induce a probability distribution
over outcomes, or give us a way to obtain the probability that one outcome is preferred
to another. This type of data is a more natural fit with the DODM probabilistic transition
model and, in fact, one of our approaches will be to translate count into frequency
data. Consider the effects of reciprocity discussed by Cialdini [2]. He reports that the
Disabled American Veterans Association gets a response rate of approximately 18%
when soliciting donations via a mass mailing campaign. When reciprocity is invoked
via an unsolicited gift being included in the mass mailing, the donation response rate
rises to 35%. This is an example of probabilistic data reported in the literature.

Another example of probabilistic data is reported by Cialdini et al. in their study of
the effect of reciprocal concessions on compliance with requests for volunteers. In that
case, it was found that a mere 16.7% of study participants agreed to volunteer in the
control condition, but when reciprocal concessions were employed 50.0% agreed.

3.2 The Strict Utility Model for Numerical Data

When data is given in terms of quantities rather than frequencies or probabilities, some
models allow us to compute frequencies or probabilities. For example, in 1929, Zermelo
proposed what has come to be known as the strict utility model [24]. This model, widely
studied in the mathematical psychology literature, describes probabilistic choice in a
forced-choice pair comparison system, where for every pair of alternatives X and Y ,
each trial asks a subject to decide if they prefer X to Y or Y to X , with no indifference
allowed. Then P (X > Y ) represents the frequency with which (the probability that) X
is preferred to Y . We say that a pair comparison system satisfies the strict utility model
if and only if there is a utility function over the alternatives f that satisfies:

P (X > Y ) =
f(X)

f(X) + f(Y )
. (1)

This model will form the basis for one method through which we transfer numerical
results from one domain to probabilities of player choice in another domain. The strict
utility model is not applicable in every situation, and in Section 4 we present experi-
mental results to verify the model. Let us consider the example from Folkes et al. [4]
discussed above. In those results, there are five different conditions for which data are
presented; however, here we will focus on two of them: A0 and A1, which according
to our notation represent a control (A0) in which no action (or in this case influence)
is applied and treatment condition (A1) in which an influence action is used. Suppose
that the data reported for each outcome is given by a function q such that q(A0) is the
quantity reported for A0, q(A1) the quantity reported for A1, etc. In addition to assum-
ing the strict utility model, we assume the utility of an alternative X is proportional to
the quantity reported for that alternative: f(X) = λ · q(X). While it need not be the
case that λ is equal for all X in every scenario, our experimental results indicate that
this assumption leads to reasonably accurate results in many cases.

We are interested in what q(A0) and q(A1) tell us about a player’s probabilistic
choice in a different domain. Specifically, we will show that based on the quantity data
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q(A0), q(A1), if we know P (A0 > C0) for some C, then we can derive P (A1 > C0).
Suppose that P (A0 > C0) = p. According to the strict utility model we have:

p = P (A0 > C0) =
f(A0)

f(A0) + f(C0)
(2)

=⇒ f(C0) =
f(A0)

p
− f(A0) (3)

Thus, we have:

P (A1 > C0) =
f(A1)

f(A1) + f(C0)
(4)

=
f(A1)

f(A1) + f(A0)
p − f(A0)

(5)

=
q(A1)

q(A1) + q(A0)
p − q(A0)

(6)

This therefore allows us to calculate P (A1 > C0) given that we know q(A0) and q(A1)
from previously collected data and we either know from the literature or assume the
value of P (A0 > C0). Thus, we can construct a probabilistic transition model based on
the assumption of probabilities without actions.

To see how this method is applied, we use the above example from Regan [13].
We have q(A0) = 1.00 and q(A1) = 1.91 when reciprocity is applied. Suppose C is
another outcome for which we have no reason to think it or A would be preferred a
priori. Thus, we assume P (A0 > C0) = 0.5 in the new domain. We have:

P (A0 > C0) = p = 0.5

P (A1 > C0) =
1.91

1.91 + 1.00
0.5 − 1.00

= 0.656,

an estimate of the effect of reciprocity on two different alternatives.

3.3 The Fechnerian Utility Model for Probabilistic Data

In certain cases, the available data are presented as frequencies or probabilities rather
than quantities and therefore cannot be interpreted as (proportional to) utility estimates.
In such cases, the strict utility model (Equation 1) does not apply. Instead, we turn to a
more general model of forced-choice pair comparisons known as the Fechnerian utility
model [3,9]. The Fechnerian utility model, which like the strict utility model is also
widely studied in the mathematical psychology literature, holds if there is a monotone
increasing function φ : R → R so that for all outcomes X, Y,

P (X > Y ) = φ[f(X) − f(Y )] (7)

As before, f(X) represents the utility of X . Therefore P (X > Y ) is a function of the
difference between the utilities of X and Y . As with the strict utility model, while it
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need not be the case that such a function φ exists in every scenario, our experimental
results indicate that this assumption leads to reasonable results in many cases.

Often times it assumed that φ is a cumulative distribution function and P (X >
Y ) is then interpreted as the probability that X has higher utility than Y . Thurstone’s
early work on the topic [21,22] made the assumption that φ followed a standard normal
(Gaussian distribution with μ = 0, σ2 = 1):

P (X > Y ) = φ[f(X) − f(Y )] =
∫ [f(X)−f(Y )]

−∞
N(x)dx

Later, Guilford [5] and Luce [8] proposed the logistic distribution as a better model:

P (X > Y ) = φ[f(X) − f(Y )] =
1

1 + e−[f(X)−f(Y )]
(8)

Note that

φ(x) =
1

1 + e−x
= z (9)

=⇒ x = −ln

(
1
z
− 1

)
(10)

Assuming the Guilford-Luce special case of the Fechnerian utility model, we derive a
method for transferring probabilistic data from one domain to another. For this model
and a given action, we have two known values, one unknown value, and a value supplied
by authors. For two alternatives A and B, we know from existing literature or another
source the probabilities that A is preferred to B in the source domain both with and
without an action applied to A (specified by P (A0 > B0) and P (A1 > B0) respec-
tively). The author supplies as input to the model the base probability P (A0 > C0) = p
indicating the preference of A over C they expect to see in the prediction domain. Using
these three values, we can compute P (A1 > C0) which is an estimate of the effective-
ness of the action in the prediction domain.

Using the Fechnerian utility model with the logistic distribution, we have:

P (A0 > B0) = φ[f(A0) − f(B0)] =
1

1 + e−[f(A0)−f(B0)]
(11)

P (A1 > B0) = φ[f(A1) − f(B0)] =
1

1 + e−[f(A1)−f(B0)]
(12)

Let α = f(A0) − f(B0) and γ = f(A1) − f(B0). Note that we know these values
from Equations 10, 11, and 12. Suppose we know the probability A0 is preferred to
C0 is equal to p, for some p ∈ (0, 1]. That is P (A0 > C0) = p. Further, let β =
f(A0)− f(C0)−α, so α + β = f(A0)− f(C0). Note that we know β since we know
α and since the Guilford-Luce version of the Fechnerian utility model gives us α + β.

Now we have

P (A1 > C0) = φ[f(A1) − f(C0)]
= φ[f(A1) − f(B0) + f(B0) − f(C0)]
= φ[γ + β]
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Since we know the value of γ and β, we know the effect of the action in the prediction
domain, i.e., P (A1 > C0). Note that the above method works for the general Fechner-
ian utility model. It is just not as easy to get x from φ(x).

Using the above data from Cialdini [2], we have P (A0 > B0) = 0.18 which implies
α = f(A0) − f(B0) = −1.51635. Additionally, we have P (A1 > B0) = 0.35,
which implies that γ = f(A1) − f(B0) = −0.61904. Let us find an outcome C so
that in the control situation, we have no reason to prefer either A or C, i.e., so that
P (A0 > C0) = p = 0.5. Then we have f(A0) − f(C0) = 0 and, further, β =
f(A0) − f(C0) − α = 1.51635. Therefore,

P (A1 > C0) = φ[γ + β] =
1

1 + e−[0.89371]
= 0.71040

which makes intuitive sense.

4 A Sample of Numerical Results

To evaluate the effectiveness of our approach, we have run our two models using data
from a number of sources. There are three parameters for our evaluation:

1. The source data domain provides probabilities or counts that serve as input into
the strict or Fechnerian utility model, specifically q(A0) and q(A1) (strict utility
model) or P (A0 > B0) and P (A1 > B0) (Fechnerian utility model); we will use
three sources, one coming from a published paper, “paper”, (details below) and the
other two from published user studies, “study 1”, and “study 2” (details below).

2. The baseline estimate domain provides the estimate of the preference over alterna-
tives when no action applies, i.e., P (A0 > C0); we will use one of three sources of
data, a pure “guess” and observations from “study 1” or “study 2”.

3. The prediction domain is where we will gather data to determine how accurate
our model is based on input data; we will compare outcomes, i.e., predicted vs.
observed probability P (A1 > C0), with data from study 1 and study 2.

Data for the source domain from “paper” comes from Folkes, Martin, and Gupta [4] for
count data and Cialdini [2] for probabilistic data. Respectively, the P (A0 > B0) and
P (A1 > B0) values for these are: 87, 121 for count data and 0.18, 0.35 for frequency
data. The data for “study 1” and “study 2” come from published interactive storytelling
systems [14,16]. Respectively the P (A0 > B0) and P (A1 > B0) values for these are:
52, 81 and 71, 85 for count data and 0.515, 0.808 and 0.707, 0.851 for probabilistic
data. Unless otherwise specified, the “guess” input was P (A0 > C0) = 0.5.

The data from Study 1 and Study 2 were collected from a web-based choose your
own adventure storytelling system. There were a number of differences between the
domains, including the story itself (the setting, characters, etc.). Both systems utilized
a branching narrative with forced choice two-alternative decisions that players were
presented with. Actions in both domains were natural language utterances that were
added to the story text, and designed to invoke the social psychological principle of
scarcity [2]. In both stories, scarcity was the “strategy” for the action, but there were
multiple concrete realizations. Specifically, there were four unique scarcity utterances
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in Study 1 and three unique scarcity utterances in Study 2. Thus, the input data above
and analysis below is based on the average of the applications of all scarcity actions (27
times total in Study 1 and 74 times total in Study 2).

Table 1. A comparison of the predicted and observed probabilities P (A1 > C0) using the strict
utility model with count data under various input conditions. The “parameters” column indicates
whether a paper (P), guess (G), study 1 (S1), or study 2 (S2) was used for the source domain,
baseline estimate, or prediction domain respectively.

parameters predicted observed error
P, G, S1 0.5817 0.8077 0.2250
P, G, S2 0.5817 0.8514 0.2696
P, S1, S1 0.5964 0.8077 0.2113
P, S2, S2 0.7700 0.8514 0.0813
P, S1, S2 0.5964 0.8514 0.2549
P, S2, S1 0.7700 0.8077 0.0377
S1, S1, S2 0.6234 0.8514 0.2280
S1, S2, S2 0.7895 0.8514 0.0619
S2, S2, S1 0.7424 0.8077 0.0653
S2, S1, S1 0.5609 0.8077 0.2478

First, consider the data in Table 1 where the results of our strict utility model for
count data are presented under various conditions. In that Table, the predicted and ob-
served probabilities P (A1 > C0) are compared and their error (absolute difference be-
tween the observed and expected probabilities) is listed as well. We found that results
were varied. In cases where S2 was used as our baseline for P (A0 > C0) average error
was very low (0.0615); however, when either a guess or S1 was the baseline, average
error was notably higher (0.2478 and 0.2355 respectively). These contributed largely to
the overall average error (and standard deviation) we observed of 0.1684 (0.0939).

Of particular interest in Table 1 are the rows where the prediction domain (third pa-
rameter) is not equal to either the source domain or baseline input (parameters one and
two) because these tests are indicative of a transfer between two completely different
domains. In two of those cases, i.e., P, S2, S1 and S2, S2, S1, the results are very good.

Next, consider the data in Table 2 where the results of our Fechnerian utility model
are presented under various conditions. First, note that the error rate is notably lower
using this version of our model with a mean (and standard deviation) of 0.0735 (0.0426)
compared to 0.1684 (0.0939) for the strict utility model. Second, notice that similarly
to the strict utility model, in general the best performance occurred when S2 was used
as the baseline again. In other words, our observations suggest that a large influence on
the overall accuracy of our models is the baseline guess for P (A0 > C0). As before,
the rows of particular interest are those where the prediction domain is distinct from the
source domain and input baseline. In most of those cases the results are very good.

To examine this effect more closely, consider the data presented in Figure 1. Those
data were obtained by holding fixed the source and prediction domains and varying the
baseline guess P (A0 > C0) from 0.1 to 0.9 in increments of 0.1. We used S1 as the
source domain to predict performance in S2 and vice versa. There are a few interesting
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Table 2. A comparison of the predicted and observed probabilities P (A1 > C0) using the Fech-
nerian utility model with probability data under various input conditions. The “parameters” col-
umn indicates whether a paper (P), guess (G), study 1 (S1), or study 2 (S2) was used for the
source domain, baseline estimate, or prediction domain respectively.

parameters predicted observed error
P, G, S1 0.7104 0.8077 0.0973
P, G, S2 0.7104 0.8514 0.1410
P, S1, S1 0.7227 0.8077 0.0850
P, S2, S2 0.8552 0.8514 0.0038
P, S1, S2 0.7227 0.8514 0.1286
P, S2, S1 0.8552 0.8077 0.0475
S1, S1, S2 0.8077 0.8514 0.0437
S1, S2, S2 0.9050 0.8514 0.0536
S2, S2, S1 0.8514 0.8077 0.0437
S2, S1, S1 0.7165 0.8077 0.0912

things to note about this figure. First, the true observed value of P (A0 > C0) is 0.707
for the S2 prediction domain and 0.515 for the S1 prediction domain. In both sets of
data reported in Figure 1, the Fechnerian utility model produced lowest error estimate
with a baseline of 0.6, in between the 0.515 [16] and 0.707 [14] true values. Note,
because the strict utility model uses count data, we can’t make the same comparison.
Also note that the Fechnerian utility model was generally more accurate than the strict
utility model with a lower error in seven of the nine test cases.

Lastly, and perhaps most significantly, notice that change between the S1, G, S2 and
S2, G, S1 series within a model is minimal. This strongly suggests the biggest source
of variance in the accuracy of our model is not the transfer between domains, but the
required input from the author about the baseline, i.e., P (A0 > C0). In other words, as
long as the data from the source domain is an accurate representation of the effect of
the action, the results in the prediction domain will be accurate provided the author’s
baseline is reasonably accurate. This is extremely encouraging for the use of this model.
While we have not eliminated the need for authors to provide accurate information, we
have reduced the amount of information through the use of our models, requiring only
data from a source domain and a baseline guess on the player behavior.

5 Extension to n-Choice Alternatives

Although we have only described the strict and Fechnerian utility models for two-choice
alternative situations, they can easily be applied in n-choice alternatives as well. The
basic idea is to “leave one out” and consider the remaining alternatives as one “com-
posite” alternative. For example, suppose there are five alternatives A1, . . . , A5 and we
are interested in knowing the effect of applying an action to A3. We can use as input
into our model P (A3

0 > {A1
0, A

2
0, A

4
0, A

5
0}) and P (A3

1 > {A1
0, A

2
0, A

4
0, A

5
0}). Here, if

A = {Aj} we will define f(A) =
∑

Aj∈A f(Aj). Thus, we would only need design-
ers to estimate the baseline probability P (A3

0 > C) for some set of alternatives C in
the prediction domain. Due to space limitations, we leave the details to the reader.
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Fig. 1. A plot of the estimation error (absolute difference between observed and predicted
P (A1 > C0)) as a function of baseline guess P (A0 > C0). There are series for both the strict
and Fechnerian utility models in the S1, G, S2 and S2, G, S1 settings.

6 Conclusion

In this paper, we have presented a method for transferring probabilistic behavior data
from one domain to another using models from mathematical psychology. We have
stated the assumptions and conditions under which this approach is reasonable to apply
and shown that it can be quite accurate. Using this method, designers will no longer
have to hand-author entire models using intuition or expert knowledge, but can rely on
lessons learned in other domains. In addition to formally deriving two-choice alternative
models, we have described how it can apply more generally to n-choice alternatives.

To characterize the performance of these models, we used data collected from vari-
ous literatures as well as inputs we varied. The results from using these data and inputs
suggest that 1) our models, especially the Fechnerian utility model, can be very accu-
rate under certain conditions; and 2) the largest influence on the overall accuracy of the
model is the author-provided baseline estimate for the prediction domain, and not the
quality of the source data or the transfer process. What our results do not yet describe—
this is a topic for future research—is a concise understanding of the conditions when
our models will be most applicable and accurate. Despite this, we are encouraged that
this approach will be useful for accurately constructing player models.
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