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Competition Graphs & Food Webs 
• Ecology is sometimes the source of interesting 
graph-theoretical problems. 
• Competition between species is a case in point. 
• Starting from predator-prey concepts in ecological 
food webs, Joel Cohen introduced the notion of 
competition graph in 1968. 
• 100s of papers on this topic since then. 
• And many applications outside of ecology. 
• Recently, one long-standing conjecture about 
competition graphs was settled. But many remain. 
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Competition Graphs 
• The notion of competition graph arose from a 
problem of ecology (Joel Cohen 1968) 
• Key (oversimplified) idea: Two species compete if 
they have a common prey. 
• The approach based on this idea has led to some 
ecological puzzles that have been unexplained for 
45 years and to challenging graph-theoretical 
conjectures one of which was finally settled in 
2011.  
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Competition Graphs of Food Webs 
Food Webs 

 Let the vertices of a directed graph 
(digraph) be species in an ecosystem. 

 Include an arc from x to y if x preys on y. 
 Usual assumption for us: no cycles. 
  

fox ant spear
grass 
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owl 
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Competition Graphs of Food Webs 
Consider a corresponding undirected graph. 
 

Vertices = the species in the ecosystem 
 

Edge between  a  and  b  if they have a common 
prey, i.e., if there is some  x  so that there are arcs 
from  a  to  x  and  b  to  x. 
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Competition Graphs 

More generally: 
 
Given a digraph  D = (V,A) 
(Usually assumed to be acyclic.) 
 
The competition graph  C(D)  has vertex set  V  
and an edge between  a  and  b  if there is an  x  
with arcs (a,x) Œ A  and  (b,x) Œ A. 
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Competition Graphs: Other 
Applications 

Other Applications: 
Ø Coding 
Ø Channel assignment in communications 
Ø Modeling of complex systems arising from 
study of energy and economic systems 
Ø Spread of opinions/influence in 
decisionmaking situations 
Ø Information transmission in computer and 
communication networks 
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Competition Graphs: Communication 
Application 

Digraph  D: 
• Vertices are transmitters and 
 receivers. 
• Arc  x  to  y  if message sent at  x  
 can be received at y. 
 

Competition graph  C(D): 
• a  and  b  “compete” if there is a receiver  x  so 
that messages from  a  and  b  can both be 
received at  x. 
• In this case, the transmitters  a  and  b  interfere. 
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Competition Graphs: Influence 
Application 

Digraph  D: 
• Vertices are people 
• Arc  x  to  y  if opinion of  x 
  influences opinion of  y. 
 
Competition graph  C(D): 
• a  and  b  “compete” if there is a person  x  so that 
opinions from  a  and  b  can both influence  x. 
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Aside: Interval Graphs 

• A key idea in the study of competition graphs is the 
notion of interval graph.  
• A graph is an interval graph if we can find 
intervals on the line so that two vertices are joined 
by an edge if and only if their corresponding 
intervals overlap. 
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Interval Graphs 

• We need to find intervals on the line that have 
the same overlap properties 

• Given a graph, is it an interval graph? 
 
 

a b

c d
e

c 

a b d e 
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Intersection of Boxes 
More generally, we can study ways to represent 
graphs where the edges correspond to 
intersections of boxes in Euclidean space.  
 
The boxicity of G is the smallest p 
so that we can assign to each vertex  
of G a box in Euclidean p-space 
so that two vertices are neighbors 
If and only if their boxes overlap.  
 
Well-defined (Roberts 1968) but hard to compute.  
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Intersection of Boxes 
• Interval graphs are the graphs of boxicity 1. 

• Consider the graph C4. 

• It is not an interval graph.  

• However, it can be represented as the 
intersection graph of boxes in 2-space. 

• So, boxicity of C4 is 2. 
 
 
 
  

a b 

c d 

G = C4 
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Intersection of Boxes 
• C4 can be represented as the intersection graph 
of boxes in 2-space. 

• So, boxicity of C4 is 2. 
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G = C4 
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Ecological Niche 
• Different factors determine a species’ normal 
healthy environment. 

– Moisture, Temperature, pH, … 

• We can use each such factor as a dimension 
• Then the range of acceptable values on each 
dimension is an interval. 
• Each species can be represented as a box in 
Euclidean space – defined by intervals on each of 
the dimensions. 
• The box represents its ecological niche. 
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Ecological Niche 
• The ecological niche is a box.  
 
  

Temp t t0 t1 

Moisture m 

m1 

m0 
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Ecological Niche 

Temp t t0 t1 

Moisture m 

m1 

m0 

• Simplifying assumption: 
acceptable ranges on each 
dimension are independent 
of values on other 
dimensions. 
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Ecological Niche 
• The ecological niche is a box.  
 
  

Temp t t0 t1 

Moisture m 

m1 

m0 

p0 

p1 

pH p 
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Competition 
• Old ecological principle: Two species compete 
if and only if their ecological niches overlap. 

• Joel Cohen (1968):  
– Start with an independent definition of 
competition 
– Map each species into a box (niche) in k-
space so competition corresponds to box 
overlap (niche overlap) 
– Find smallest k that works. 
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Competition 
• Specifically, Cohen started with the competition 
graph as defined before. 
• The question then becomes: What is the boxicity 
of the competition graph? 
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fox 

owl ant 

deer spear grass 

This is an interval graph. Thus, boxicity is 1. 
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Strait of Georgia, British Columbia, Canada 
Due to Parsons and LeBrasseur 
From Joel Cohen, Food Webs and Niche Space 
Princeton University Press, 1978 
 

1 

2 
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4 

5 

6 7 

Key: 
1. Juvenile Pink Salmon 
2. P. Minutus 
3. Calanus & Euphasiid 

Barcillia 
4. Euphasiid Eggs 
5. Euphasiids 
6. Chaetoceros Socialis 

& Debilis 
7. Mu-Flagellates 
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Strait of Georgia, British Columbia, Canada 
 

1 
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Competition graph 

1 4 

3 5 

2 

6 7 
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Strait of Georgia, British Columbia, Canada 
 

Competition graph 

1 4 

3 5 

2 

6 7 

What is the boxicity 
of the competition 
graph? 
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Strait of Georgia, British Columbia, Canada 
 

Competition graph 

1 4 

3 5 

2 

6 7 

This is an interval 
graph. Thus, its  
boxicity is 1. 
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Malaysian Rain Forest 
Due to Harrison 
From Cohen, Food Webs and 
Niche Space 

Key 
1.  Canopy – leaves, fruits, 

flowers 
2.  Canopy animals – birds, 

bats, etc. 
3.  Upper air animals – 

insectivores 
4.  Insects 
5.  Large ground animals – large 

mammals & birds 
6.  Trunk, fruit, flowers 
7.  Middle-zone scansorial 

animals 
8.  Middle-zone flying animals 
9.  Ground – roots, fallen fruit, 

leaves 
10. Small ground animals 
11. Fungi 

5 2 3 8 7 10 

1 
4 6 

9 

11 
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Competition Graph 
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Competition Graph 
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What is the boxicity 
of the competition 
graph? 
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Competition Graph 
11 

9 

4 5 

10 

2 

7 3 

8 

1 6 

This is an interval 
graph. Thus, its 
boxicity is 1.  
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Structure of Competition Graphs 
• In the first 8 years after this problem was 
introduced, every food web studied was found to 
have a competition graph that was an interval 
graph. 
• In 1976, a Rutgers undergraduate, Gordon Kruse, 
found the first example of a food web whose 
competition graph was not an interval graph. 
• It arose from a complex set of habitats. 
• Generally since then: Food webs arising from 
“single habitat ecosystems” (homogeneous 
ecosystems) have competition graphs that are 
interval graphs.  
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Structure of Competition Graphs 
• Thus, for single habitat ecosystems, the 
competition graphs have boxicity 1. 
• One ecological dimension is enough to account 
for competition. 
• Challenges: 

– Explain why? 
– Interpret this single ecological dimension 
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Structure of Competition Graphs  
The remarkable empirical observation of 
Cohen’s that real-world competition graphs are 
usually interval graphs has led to a great deal of 
research on the structure of competition graphs 
and on the relation between the structure of 
digraphs and their corresponding competition 
graphs. 
 

Competition graphs of many kinds of digraphs 
have been studied.  
 

In many of the applications of interest, the 
digraphs studied are acyclic. 
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Structure of Competition Graphs 
• The explanations for the empirical observation 
have taken two forms: 

– Statistical 

– Graph-theoretical 



36 

Structure of Competition Graphs 
• Statistical Explanations: 

– Develop models for randomly generating 
food webs 
– Calculate probability that the corresponding 
competition graph is an interval graph 
– Much of Cohen’s Food Webs and Niche 
Space takes this approach. 
– Later: Cascade model developed by Cohen, 
Newman, and Briand. But Cohen and Palka 
showed that under this model, the probability 
that a competition graph is an interval graph 
goes to 0 as the number of species increases. 
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Structure of Competition Graphs 
• Graph-theoretical Explanations: 

– Analyze the properties of competition graphs 
that arise from different kinds of digraphs. 
– Characterize the digraphs whose 
corresponding competition graphs are interval 
graphs. 
– Much known about the former problem. 
– Latter problem remains the fundamental 
open problem in the subject. 
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The Competition Number 
Suppose  D  is an acyclic digraph.  
 

Then its competition graph must have an isolated 
vertex (a vertex with no neighbors). 
 

Theorem: If  G  is any graph, adding sufficiently 
many isolated vertices produces the competition 
graph of some acyclic digraph.  
Proof:  Construct acyclic digraph  D  as follows. 
Start with all vertices of  G.  For each edge  {x,y}  
in  G,  add a vertex a(x,y) and arcs from  x  and  
y  to a(x,y).  Then  G  together with the isolated 
vertices  a(x,y)  is the competition graph of  D.   
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a b 

c d 

G = C4 

a b c d 

α(a,b) α(b,c) α(c,d) 

α(a,d) 

D 

a b 

c d 

C(D) = G U I4 

α(a,b) 

α(b,c) 

α(c,d) 

α(a,d) 

The Competition Number 



40 

The Competition Number 
• Thus, D as shown in previous slide has a 
competition graph that is not an interval graph. 
• In fact, there are examples of competition graphs 
of acyclic digraphs that have arbitrarily high 
boxicity. 

– Just start with a graph of boxicity b. 
– Add sufficiently many isolated vertices to 
make the graph into a competition graph. 
– Adding isolated vertices does not change the 
boxicity. 

• Thus, the empirical observations tracing back 
to Joel Cohen are truly surprising. 
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The Competition Number 

If  G  is any graph, let  k  be the smallest number 
so that  G « Ik  is a competition graph of some 
acyclic digraph.  
 
k = k(G)  is well defined. 
 
It is called the competition number of  G. 
(Roberts 1978) 
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The Competition Number 

Our previous construction shows that 
 

k(C4) £ 4. 
 
In fact: 
•  C4 « I2  is a competition graph 
•  C4 « I1  is not 
 
•  So k(C4) = 2. 
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The Competition Number 
Competition numbers are known for many 
interesting graphs and classes of graphs. 
 

However: 
 

Theorem (Opsut 1982):  It is an NP-complete 
problem to compute  k(G).  
 

Characterization of which graphs arise as 
competition graphs of acyclic digraphs comes 
down to the question: Given a graph, how many 
isolated vertices is it necessary to add to make it 
into a competition graph? Thus, the 
characterization problem is NP-complete 
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The Competition Number 
Theorem (Dutton and Brigham 1983): A graph 
G with n vertices is the competition graph of an 
acyclic digraph iff we can find n cliques C1, C2, 
…, Cn that cover all the edges and we can label 
the vertices v1, v2, …, vn so that if vi in Cj, then i 
> j. 

Theorem (Lundgren and Maybee 1983): If m < 
n, then a graph G with n vertices has k(G) ≤ m iff 
we can find cliques C1, C2, …, Cn+m-2 that cover 
all the edges and we can label the vertices v1, v2, 
…, vn so that if vi in Cj, then i ≥ j-m+1.  

 
 



45 

Opsut’s Conjecture 

Let q(G) = smallest number of cliques covering 
V(G). 
 

N(v) = open neighborhood of v.  
 
Observation: If  G  is a line graph, then for all 
vertices  u,  q(N(u)) £ 2. 
 
Theorem (Opsut, 1982): If  G  is a line graph, 
then  k(G) £ 2, with equality iff for every u, 
q(N(u)) = 2.  
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Opsut’s Conjecture 

Opsut’s Conjecture (1982): Suppose  G  is any 
graph in which q(N(u)) £ 2 for all u. Then  k(G) 
£ 2, with equality iff for every u, q(N(u)) = 2.  
 
Note: graphs with q(N(u)) £ 2 are sometimes 
called quasi-line graphs or locally co-bipartite 
graphs. 
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Quasi-line Graphs 

Quasi-line graph 

a 

e 

d c 

b 

f 

g 

a 

e 

d c 

b 

f 

g 

Not a quasi-line graph: q(N(a)) = 3  
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Opsut’s Conjecture 
Hard problem.  
 

Sample Theorem (Wang 1991): Opsut’s 
Conjecture holds for all K4-free graphs. 
 

G is critical if q(N(u)) £ 2 for all u and for every 
(not necessarily maximal) clique K, there is a 
vertex u in K such that q(N(u)-K) = 2.   
 

Sample Theorem (Wang 1991): Opsut’s 
Conjecture holds for all non-critical graphs. 
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Opsut’s Conjecture 
 
Theorem (McKay, Schweitzer, Schweitzer 2011): 
Opsut’s Conjecture is true. 
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Opsut’s Conjecture 
 
Comment on the Proof: 
•  A key part of the proof is to prove a variant of 

a characterization of quasi-line graphs, graphs 
in which q(N(u)) £ 2 for all u. 

•  Originally characterized by Chudnovsky and 
Seymour 2005. 
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Holes in Graphs  
A hole in a graph is an induced cycle Cn with n > 
3.  
 

a b 

c d 

e f 

g h 
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Holes in Graphs  
 

A chordal graph is a graph with no holes. 
 

Theorem (Roberts 1978): If G is chordal, then 
k(G) ≤ 1. 
 

Theorem (Cho & Kim 2005): If  G has exactly 
one hole, k(G) ≤ 2. 
 
Theorem (Lee, Kim, Kim, Sano 2010): If G has 
exactly two holes, k(G) £ 3. 
 

Conjecture (Kim 2005): k(G) ≤ number of holes 
+ 1. 
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Holes in Graphs  
Theorem (McKay, Schweitzer, Schweitzer 2011): 
Kim’s conjecture is true: k(G) ≤ number of holes + 
1. 
 
McKay, et al. also proved a generalization of this 
result.  
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Holes in Graphs  
Consider the subspace of the cycle space of a 
graph that is spanned by the holes.  
 
Cycle space: represent each cycle by a 0-1 vector 
with each entry corresponding to an edge and 
entry corresponding to edge e being 1 iff e is on 
the cycle. 
 
Hole Space H(G): subspace of cycle space 
spanned by vectors corresponding to holes. 
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Holes in Graphs 
 
Conjecture (Kim, Lee, Park, Sano 2011):  
k(G) ≤  dim H(G)  + 1  
 
Theorem (McKay, Schweitzer, Schweitzer 
2011): This conjecture is also true. 
 
Theorem (Lee, et al 2011): If all holes are 
pairwise edge-disjoint, then k(G) ≤ dim H(G) – 
ω(G) + 3 
 
 ω(G) = size of the largest clique. 
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source Food 

Webs 
• Interesting observation that how one gathers 
data about food webs can influence your 
conclusions about competition graphs. 
• A community food web includes all predation 
relations among species.  
• In practice, we don’t get all this data.  
• We might start with some species, look for 
species they prey on, look for species they prey 
on, etc. 
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source Food 

Webs 
• Suppose F is a community food web. 
• Let W be a set of species in F (ones we start with). 
• Let X be the set of all species that are reachable by a 
path in F from vertices in W.  

– So, we start with vertex of W, find its prey, find prey 
of the prey, etc. 

• Let Y be the set of all species that reach vertices of W 
by a path in F. 

– So we start with vertex of W, find its predators, find 
predators of those predators, etc. 
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source Food 

Webs 
• Suppose F is a community food web. 
• Let W be a set of species in F (ones we start with). 
• Let X be the set of all species that are reachable by a 
path in F from vertices in W.  

– The subgraph induced by vertices of X is called the 
sink food web corresponding to W. 

• Let Y be the set of all species that reach vertices of W 
by a path in F. 

– The subgraph induced by vertices of Y is called the 
source food web corresponding to W. 
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Data Gathering 
a b c d 

x 
y z 

e f 

Community 
food web F 
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Data Gathering 

Community 
food web F 

a b c d 

x 
y z 

e f 

W = {a,y} 
What is the sink 
food web? 
 
X = {a,x,e,f,y}   

Sink food web from W 
a 

e 

x 

f 

y 
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Data Gathering 

Community 
food web F 

a b c d 

x 
y z 

e f 

W = {a,y} 
What is the source 
food web? 
Y = {a,b,c,y} 

Source food web from W 

 b c 

y 

a 



62 

Data Gathering: Community Food 
Webs, Sink Food Webs, Source Food 

Webs 
• Theorem (Cohen): A community food web has a 
competition graph that is an interval graph if and 
only if every sink food web contained in it does. 

• However: A community food web can have a 
competition graph that is an interval graph while 
some source food web contained in it has a 
competition graph that is not an interval graph.  
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Data Gathering 

b 

a b c d 

x 
y z 

e f 

Community 
food web F 

e 

a 

c d 

x 
y 
z 

f 

a 

c 

b d 
x 

y z e 

f 

The competition graph of F 
is an interval graph. 
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Data Gathering 
a b c d 

x 
y z 

e f 

Community 
food web F 

a b 

c d 

y 

z 

e 

f 

W = {e,f,y,z} 
What is the competition graph 
of the source food web of W? 
Y = {a,b,c,d,e,f,y,z} 

Competition graph of the 
source food web from W  
This is not an interval graph. 
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Data Gathering: Community Food 
Webs, Sink Food Webs, Source Food 

Webs 
• This surprising result points up some of the 
difficulties involved in understanding the 
structure of competition graphs. 
• It also leads to interesting caveats about general 
conclusions using models that are tested with 
data. 
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The Interval Graph Competition 
Graph Problem 

• It remains a challenge (dating back to 1968) to 
understand what properties of food webs give rise 
to competition graphs of boxicity 1, i.e., interval 
graphs. 
• In a computational sense this is easy to answer:  

– Given a digraph, compute its competition 
graph (easy) 
– Determine if this is an interval graph (well 
known to be solvable in linear time) 
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The Interval Graph Competition 
Graph Problem 

• More useful would be results that explain the 
structural properties of acyclic digraphs that give 
rise to interval graph competition graphs. 
• However, such results might be difficult to find: 

• Theorem (Steif 1982): There is no list L (finite 
or infinite) of digraphs such that an acyclic 
digraph D has an interval graph competition 
graph if and only if it does not have an induced 
subgraph in the list L.  
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The Interval Graph Competition 
Graph Problem 

• There are, however, results with extra 
assumptions about the acyclic digraph D. 
• Example: It is useful is to place limitations on the 
indegree and outdegree of vertices (the maximum 
number of predator species and maximum number 
of prey species for any given species in the food 
web).  
• Then there are some results with forbidden lists L.  
(e.g., Hefner, et al., 1991). 
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Variants of Competition Graphs 
• Many variants of competition graphs have been 
studied in the literature: 
­  Common enemy graphs (Lundgren/Maybee) 
­  Competition common enemy graphs (Scott) 
­  Niche graphs (Cable, et al.) 
­  Phylogeny graphs (Roberts and Sheng) 
­  Competition hypergraphs (Sonntag & 

Teichert) 
­   p-competition graphs (Kim, et al.) 
­  Tolerance competition graphs (Brigham, et 

al.) 
­  m-step competition graphs (Cho, et al.) 



70 

Concluding Comments 
There is much left to do in the study of competition 
graphs and their ecological and other applications. 

 
 

Cicada images courtesy 
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