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Module Summary: This module introduces the student to the process of mathematical 

modeling. It shows how the process starts in the “real world” with a physical system and some 

observations or an experiment.  When  the  laws  of  physics  that are thought to govern the 

behavior of the  system  are  translated  in  mathematical terms, the result is what is called a 

mathematical model. The mathematical model is subsequently analyzed for its properties and 

used to generate predictions about the behavior of the system in a changing environment. 

These predictions are tested against observations, and, if there is agreement between 

predictions and observations, the model is accepted; otherwise, the model is refined, for example 

by bringing in more details of the physics, and the process is repeated. Thus, mathematical 

modeling is an iterative process. 

 

To illustrate this iterative process, this module builds a series of zero-dimensional energy 

balance models for the Earth’s climate system. In a zero-dimensional energy balance model, the 

Earth’s climate system is described in terms of a single variable, namely the temperature of the 

Earth’s surface averaged over the entire globe. In general, this variable varies with time; its 

time evolution is governed by the amount of energy coming in from the Sun (in the form of 

ultraviolet radiation) and the amount of energy leaving the Earth (in the form of infrared 

radiation). The mathematical challenge is to find expressions for the incoming and outgoing 

energy that are consistent with the observed current state of the climate system on Earth, that 

corresponds to the average temperature on Earth. 

 

Informal Description: This module introduces the student to the mathematical modeling 

process by showing how to build a zero-dimensional energy balance model for the Earth’s 

climate system. The process is an iterative one and generates various versions of the model. 

Successive versions include more physics to better match the observations. The emphasis 

in the module is on the process, rather than the models derived in the process, because the 

process is universal and independent of the complexity of the model. The process is 

illustrated in Figure 1. 

 

The mathematical modeling process starts in the “real world” with a physical system and some 

observations or an experiment.  We assume that the behavior of the system is governed by the 

laws of nature—Newton’s law of motion, Fourier’s law of heat conduction, etc. When these 

laws are formulated in mathematical terms, we obtain what we call a “mathematical model”—

a set of mathematical equations that describe the state of the physical system as it evolves in 

time. In the next step of the modeling process, we “analyze” the model—that is, we apply our 

mathematical knowledge to extract information from the model, to see whether we 

understand and can explain what we see in the real world. In the third step we use the model to 

make predictions about what we will see in additional experiments and observations. We then 

return to the real world to test these predictions by running the experiments or collecting more 

observations, and either accept the model if we find that the outcome matches our 

predictions, or refine the model if we find that improvements are needed. Typically, we go 
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around this modeling cycle many times, building progressively better models, thus improving 

our understanding of the physical system and increasing our ability to make predictions 

about its behavior. 
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Figure 1: The modeling cycle. 

 
In this module, the physical system of interest is the Earth’s climate system—a proto- typical “complex 

system” that has many components: the atmosphere, oceans, lakes and other bodies of water, snow and 

ice, land surface, all living things, and so on. The components interact and influence each other in 

ways that we don’t always understand, so it is difficult to see how the system as a whole evolves, let 

alone why it evolves the way it does. For some complex system it is possible to build a physical 

model and observe what happens if the environment changes. This is the case, for example, for a 

school of fish whose behavior we can study in an aquarium. 

It is also true for certain aspects of human behavior, which we can study in a social network. 

But in climate science this is not possible; we have only one Earth, and we cannot perform 

a controlled real-life experiment. The best we can do if we want to gain insight into what 

might have happened to the Earth’s climate system in the past, or what might happen to it in 

the future, is to build mathematical models and “play” with them.  Mathematical models are 

the climate scientist’s only experimental tools. 

 

The modeling process—building and testing a series of imperfect models—is the most essential 

brick in the foundation of climate science and an indispensable tool to evaluate the arguments 

for or against climate change. Models are never perfect—at best, they provide some 

understanding and some ability to test “what-if” scenarios. Especially in an area as complex as 

the Earth’s climate, we cannot and should not expect perfection.  Recognizing and identifying 

imperfection and uncertainty are key parts of all modeling and, especially, climate modeling. 

 

Mathematical models of the Earth’s climate system come in many flavors. They can be 

simple—simple enough that we can use them for back-of-the-envelope calculations, or they can 

be so complicated that we need a supercomputer to learn what we want to know. But 

whatever kind of models we use, we should always keep in mind that they are simplified 

representations of the real world, they are not the “real world,” and they are made for a 
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purpose, namely to better understand what is driving our climate system. 

 

The present module looks at the simplest possible description of the Earth’s climate system. 

In the following models, the state of the climate system is characterized by a single 

variable—the temperature of the Earth’s surface, averaged over the entire globe (referred to as 

“zero-dimensional energy balance” models in physics). An energy balance equation is a formal 

statement of the fact that the temperature of the Earth increases if the Earth receives more 

energy from the Sun than it re-emits into space, and that it decreases if the opposite is the 

case. The module shows how to construct energy balance models by finding mathematical 

expressions for the incoming and outgoing energy. The models are tested against “real-world” 

data and improved in successive steps of the iterative modeling process to better match the 

available data. 

 

In this module, the focus is on the physics, but we emphasize that modeling the Earth’s 

climate system is fundamentally an interdisciplinary activity. Understanding the Earth’s 

climate requires knowledge, skills, and perspectives from multiple disciplines. For example, 

atmospheric chemistry explains why much of the incoming energy from the Sun (largely in 

the ultraviolet and visible regions of the spectrum) passes through the atmosphere and reaches 

the Earth’s surface, but much of the black-body radiation emitted by the Earth (largely in the 

infrared regions of the spectrum) is trapped by greenhouse gases like water vapor and 

carbon dioxide. Similarly, the life sciences help us understand the part played by the 

biosphere in the Earth’s climate system—the effects of the biosphere on the Earth’s albedo and 

the interactions between atmospheric chemistry and plant and animal life. 

 

Target Audience: This module is suitable Lab for undergraduate students in an introductory 

differential equation class. 

 

Prerequisites: Basic knowledge of the concept of derivatives and ordinary differential 

equations. 

 

Mathematical Fields: Ordinary differential equations. 

Applications Areas: Geophysics and climate science. 

Goals and Objectives. 
• Teach the process of “mathematical modeling. 

• Show how a simple model like a single variable energy balance model can provide 

insight into aspects of climate dynamics.  
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1 Model #1: The Simplest 
 

We consider the Earth with its atmosphere, oceans, and all other components of the climate 

system as a homogeneous solid sphere, ignoring differences in the atmosphere’s composition 

(clouds!), differences among land and oceans, differences in topography (altitude), and many 

other things. 
 

1.1 Observation 
 

The climate system is powered by the Sun, which emits radiation in the ultraviolet (UV) 

regime. This energy reaches the Earth’s surface, where it is converted by physical, chemical, 

and biological processes to radiation in the infrared (IR) regime. This IR radiation is then 

re-emitted into space. If the Earth’s climate is in equilibrium (steady state), the average 

temperature of the Earth’s surface does not change, so the amount of energy received must 

equal the amount of energy re-emitted. 

 

 

 

 
 

 

 

 

 

 

 

 
    Figure 2. Simplest Climate Model 

 

1.2 Modeling 

 
Units: Length in meter (m), time in seconds (s), energy in joules (J), power (energy per 

unit time) in watts (W), and temperature in Kelvin (K). Kelvin (or absolute) temperature is 

obtained from Celsius (C) temperature by adding 273.15. The average temperature on Earth is 

about 15 C, or about 288 K. 
 

Variable: T , the temperature of the Earth’s surface averaged over the entire globe. 

 

Building the model. 

 

• At any given time, the Earth receives incoming solar radiation over its cross-sectional 

areThe area πR2, where R is the radius of the Earth. 

• S, known as the solar constant, is the average solar electromagnetic power flowing 

through a flat surface of area 1 m2 at a distance of one astronomical unit from the Sun. 

S atellite observations give an approximate value of S = 1370 Wm−2. It is convenient below to 

define 𝑄 = 𝑆/4 and use Q = 342.5 instead of S. 

• The amount of power flowing into the disk (i.e., reaching the Earth) is 
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Incoming power: 𝑃𝑖𝑛 = 𝜋𝑅2𝑆 = 4𝜋𝑅2𝑄. 

 

• All bodies radiate power in the form of electromagnetic radiation. The amount of 

power radiated out depends on the temperature of the body. 

• In physics, the Stefan–Boltzmann law gives the power per unit surface area  (in units of 

Wm−2) for “black-body radiation”, as 𝜎𝑇4, where σ (Greek, pronounced “sigma”), is the 

Stefan–Boltzmann constant; its value is σ = 5.67·10−8 Wm−2K−4. 

• The area of the Earth’s surface is 4πR2. 

• The amount of power radiated out by the Earth is 

 

Outgoing power: 𝑃𝑜𝑢𝑡 =  4𝜋𝑅2𝜎𝑇4. 
 

1.3 Analysis 
 

If the incoming power 𝑃𝑖𝑛 is greater than the outgoing power 𝑃𝑜𝑢𝑡, the Earth’s temperature 

increases. If the incoming power is less than the outgoing power, the Earth’s temperature 

decreases. If Pin = Pout, the Earth’s temperature remains constant; the planet is said to be in 

thermal equilibrium, or in steady state. Our mathematical model the thermal equilibriu 

temperature T gives the equations 

 

 4𝜋𝑅2𝑄 = 4𝜋𝑅2𝜎𝑇4 

𝑄 =  𝜎𝑇4 

𝑇 = (𝑄/𝜎)
1

4 

Exaericse 1: Use σ = 5.67·10−8 and Q = 342.5 to find the Kelvin and Celsius temperatures at thermal 

equilibrium. [Answer:  𝑇 ≈  278.78 𝐾 or 5.63 C] 

 

Conclusion. Model #1 gives the average temperature at equilibrium below the observed value of about 

15  C or 288 K. 

 

2 Model #2: Adjusting for reflectivity 
 

We seek to improve on Model #1, which omitted a number of important factors 
 

2.1 Observation 
 

The first factor we want to add involves reflection—some of the incoming energy from the 

Sun is reflected back out into space. Snow, ice, and clouds, for example, reflect a great deal 

of the incoming light from the Sun. A fraction, called albedo measures the reflectivity of a 

surface. Albedo ranges from 0 (no reflectance) to 1 (complete reflectance). 
 

2.2 Modeling 
 

Additional physical constant: Earth’s albedo α = 0.32. Roughly 32% of the incoming 

energy from the Sun is reflected back into space, with the remaining 68% absorbed by the 

Earth. 
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Building the model. 

 

• The amount of power absorbed by the Earth is now 

 

Incoming power: 𝑃𝑖𝑛 =  4𝜋𝑅2𝑄(1 − 𝛼). 
 

• The amount of power radiated out by the Earth remains 

 

Outgoing pwer: 𝑃𝑜𝑢𝑡 =  4𝜋𝑅2𝜎𝑇4. 
 

2.3 Analysis 
 

At thermal equilibrium, with 𝑃𝑖𝑛 =  𝑃𝑜𝑢𝑡, this second mathematical model leads to 

 

𝑄(1 − 𝛼)  =  𝜎𝑇4. 
 

Exercise 2: (a) Solve for T. [Answer: 𝑇 = [
𝑄(1−𝛼)

𝜎
]

1

4.] 

(b) By comparing your expression in (a) to the Model #1 expression 𝑇 = (𝑄/𝜎)
1

4, will 

the Model #2 value of T be greater or lesser than that of Model #1? [Answer: T (in 

K) in Model #2 is less by a factor of (1 − 𝛼)
1

4.] 

 

With α = 0.32, σ = 5.67·10−8, and Q = 342.5, 𝑇 ≈  253.16 K or − 19.99 C. 

 
Conclusion. Although Model #2 i n c l u d e s  m o r e  p h y s i c s , its prediction of the  

temperature is worse than the prediction of Model #1. 

 

3 Model #3: The Greenhouse Effect 
 

It is somewhat disconcerting that we construct a better model and get a result that is not as 

good as that of an earlier model. But once we accept the mathematical model, we must 

accept the result. The only option is to look where we might have overlooked something in 

the model. In this third model, we focus on the outgoing radiation. 
 

3.1 Observation 
 

Greenhouse gases like carbon dioxide, methane, and water, as well as dust and aerosols, have a 

significant effect on the properties of the atmosphere. The effect on the outgoing 

radiation is difficult to model, but the simplest approach is to reduce the Stefan–Boltzmann 

law by some factor. The underlying assumption is that Eath behaves as a “gray-body” rather 

than a “black-body” radiator, as atmospheric greenhouse particles emit radiation back to the 

Earth’s surface.   
 

3.2 Modeling 
 

Additional physical parameter: ε, greenhouse factor. This parameter is introduced in an 

attempt to model the effect that the greenhouse effect has in reducing the  net amount 
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1 

of power radiated into space; its value will be estimated below using the observed global 

average temperature. ε ranges from 0 (no radiation emitted) to 1 (black body). 

 
 

Building the model 

 

• As in Model #2, the amount of power absorbed by the Earth is  

 

Incoming power: 𝑃𝑖𝑛 =  4𝜋𝑅2𝑄(1 − 𝛼). 
 

• The amount of power radiated out by the Earth is adjusted by a factor 𝜀 

 

Outgoing pwer: 𝑃𝑜𝑢𝑡 =  4𝜋𝑅2𝜀𝜎𝑇4. 
 

3.3 Analysis 

 
At thermal equilibrium, with 𝑃𝑖𝑛 =  𝑃𝑜𝑢𝑡, this third mathematical model leads to 

 

𝑄(1 − 𝛼)  =  𝜀𝜎𝑇4. 

 (2) 

Exercise 3: (a) Solve for T . [Answer:  𝑇 = [
𝑄(1−𝛼)

𝜀𝜎
]

1

4
 
.] 

(b) What value of ε gives a climate model that correctly predicts the current global average 

temperature 𝑇
∗ 

≈ 288 K? (Take α = 0.32, σ = 5.67·10−8, and Q = 342.5 as before). [Answer: 

𝜀 =
𝑄(1−𝛼)

𝜎𝑇
4  = 0.60.] 

(c) What happens if the combined effects of greenhouse gases, dust, and aerosols reduce 

the parameter ε to 0.5? [Answer: The equilibrium temperature T increases to 301.06 K or 

27.91 C.] 

 

Conclusion. We can match the current climate state by taking into account the effect of 

greenhouse gases. Our climate model predicts that, if the amount of greenhouse gasses in the 

Earth’s atmosphere increases, then the Earth will warm up. This is the well-known greenhouse gas 

effect. However, this model is certainly too simple to predict the state of our planet with any great 

accuracy, so we should interpret this finding with great care. 

An interesting question is what actually happens when the balance of incoming and outgoing 

energy is perturbed. Perhaps a volcanic eruption throws dust into the atmosphere, or 

humans release increasing amounts of CO2 or other greenhouse gases into the atmosphere. 

Greenhouse gases affect the Earth’s climate by absorbing some of the outgoing radiation. 
 

Exercise 3 (continued). (d) What do you expect to happen to the Earth’s temperature if Pin > 

Pout? What if Pout > Pin? [ Answer: The temperature increases if Pin > Pout, decreases if Pout 

> Pin] 
 

We can ask more questions.  In the case when temperature increases, will the temperature 

continue to increase or will it level off at a higher equilibrium? What does the difference Pin − 

Pout represent? How fast will the temperature change? To answer these questions, we need a 

fancier model. 
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4.   Model #4: Differential Equation 
 
4.1  Modeling 
 

The fancier model uses a result from thermodyamics in which the rate of change of internal 

heating is proportional to the energy imbalance, as represented by the difference between 

the incoming and outgoing power densities (power per unit area). The temperature evolution 

equation is 

 

𝐶
𝑑𝑇

𝑑𝑡
 =Q(1− α) − εσT 4     (1) 

 

This is an ordinary differential equation (ODE) for the temperature T as a function of time t. 

The constant of proportionality C = 2.08·108 JK−1m−2 is the effective heat capacity of the 

Earth's surface. 
 

The equation above is an ODE of the type  
𝑑𝑇

𝑑𝑡
=  𝑓(𝑇). A visual representation helps us 

to understand how the Earth’s temperature changes when the balance of the incoming and 

outgoing power is perturbed. 

 

Figure 3 below shows the graph of  𝑓(𝑇) = [𝑄(1 − 𝛼) − 𝜀𝜎𝑇4]/C for α = 0.32, σ = 

5.67·10−8, Q = 342.5, and ε = 0.60. Since we are only interested in the solution of  𝑓(𝑇) =

0, we use C = 1. 

 

 
Figure 3: Graph of f(T). 

 

Exercise 4: (a) What does the vertical axis represent in the physical world and what are the units? 

[Answer: 𝑑𝑇/𝑑𝑡, the rate at which the temperature changes in Kelvin per second.] 

(b) What is the zero of f (T ) in the range between 250 K and 350 K? Where have we seen this value 

before? What does it represent?  [Answer: f (T ) = 0 for T = 288 K. This equilibrium solution of 

the ODE is the same as the current global average temperature T 
*
 that was used im Model #3 to 
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compute ε.] 

(c) If the temperature is 300 K, do you expect the temperature to increase, decrease, or remain 

the same? Use the graph to help you. [Answer: At T = 300 K, the value of 𝑑𝑇/𝑑𝑡 = 𝑓(𝑇 ) <
0; the temperature should decrease.[ 

(d) If the temperature is 250 K, do you expect the temperature to increase, decrease, or remain 

the same? Use the graph to help you. [Answer: At T = 250 K, the value of 𝑑𝑇/𝑑𝑡 = 𝑓(𝑇) >
0; the temperature should increase.] 

(e) Repeat (b)-(d) for ε = 0.5, and compare your findings in the two cases. 

[Answer: A s  i n  t h e  p r e v i o u s  s e c t i o n ,  the equilibrium temperature increases to 301.06 K, so 

the graph in Figure 3 will cross the horizontal axis at that temperature. At T = 250 K and 300 K, the 

value of 𝑑𝑇/𝑑𝑡 =  𝑓 (𝑇 ) > 0; the temperature should increase.] 

 

4.2  Analysis 
 

The graph of f(T )  contains qualitative information about the dynamics of the system. In the 

case α = 0.32 and ε = 0.60, we found an equilibrium at T∗  = 288 K. If the average 

temperature T is less than T∗, the Earth’s surface will warm up; on the other hand, if T is 

greater than T∗ , the Earth will cool down.  If T is exactly equal to T∗, the average 

temperature will stay the same.  Thus, after any small perturbation, the average temperature 

tends to be restored to its equilibrium value T∗. In mathematics, we say that T∗  corresponds 

to a stable equilibrium. 

 

Conclusion. We can use a differential equation to model global temperature when there is an 

energy imbalance. Our model indicates that the current climate state is stable. 

 
Exercise 4 (continued) (f) Is the equilibrium you found for ε = 0.5 stable? [Answer: Yes.] 

 

5 Summary and Further Exploration 
 

The global temperatures at equilibrium in the first three models are determined algrebarically on the 

basis of energy balance, in which the incoming and outgoing power are equal. To account for an energy 

imbalance, we introduce the ODE in Equation (1). An ODE is a widely-used mathematical tool for 

modeling how physical quantities change over time. In this module, we solve algebraically for the 

equilibrium soluton of the ODE and analyze its stability. As our focus is on the modeling process, 

solving the ODE for T(t) is beyond our scope. The references propose an approximation, in this care the 

linearization εσT 4 ≈ A + BT, to simplify the ODE. 

 

The models in this module can be refined further. The exercise below explores how melting sea ice 

would affect albedo (measuring reflectivity) and temperature. 

 

Exercise 5: (a) Suppose that average global temperature was to rise so that sea ice becomes ocean water. 

Expalin how the following would change (increase or decrease): Earth’s average abledo α, equilibrium 

temperatures found in Models 2-4, the rate dT/dt in Equation (1). 

[Answer: Sea ice has higher albedo (α = 0.5 to 0.7) than ocean water (α = 0.06), so as sea ice 

melts to become ocean water, the Earth’s albedo decreases. The temperatures have a factor 

of (1 − 𝛼)
1

4, which would increase. The first term, 𝑄(1 − 𝛼), in Equation (1) would increase, 

so dT/dt would also increase.] 
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The exercise above shows that a better model replace the constant α by a function α(T) that models how 

the albedo might depend on temperature. The next part examines the greenhouse effect in more detail. 

 

Exercise 5: (b) Speculate on the effect (increase or decrease) of an increase in the amount of greenhouse 

gases, dust, aerosols in the atmosphere on the following quantities in Model #4: Earth’s average abledo 

α, incoming power density 𝑄(1 − 𝛼), outgoing power density εσT 4, dT/dt in Equation (1)? 

[Answer: α would decrease as reflectivity is reduced, thus increasing the incoming power density. The 

greenhouse factor ε, and therefore εσT 4 would decrease. dT/dt would increase.] 
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